Everything you need to know about HRIS API Integration

HRIS or Human Resources Information Systems have become commonplace for organizations to simplify the way they manage and use employee information. For most organizations, information stored and updated in the HRIS becomes the backbone for provisioning other applications and systems in use. HRIS enables companies to seamlessly onboard employees, set them up for success and even manage their payroll and other functions to create an exemplary employee experience.

However, integration of HRIS APIs with other applications under use is essential to facilitate workflow automation. Essentially, HRIS API integration can help businesses connect diverse applications with the HRIS to ensure seamless flow of information between the connected applications. HRIS API integrations can either be internal or customer-facing. In internal HRIS integrations, businesses connect their HRIS with other applications they use, like ATS, Payroll, etc. to automate the flow of information between the same. On the other hand, with customer-facing HRIS integrations, businesses can connect their application or product with the end customer’s HR applications for data exchange. 

This article seeks to serve as a comprehensive repository on HRIS API integration, covering the benefits, best practices, challenges and how to address them, use cases, data models, troubleshooting and security risks, among others. 

Benefits of HRIS API integration

Here are some of the top reasons why businesses need HRIS API integration, highlighting the benefits they bring along:

  • Higher employee productivity: HRIS API integration ensures that all data exchange between HRIS and other applications is automated and doesn’t require any human intervention. This considerably reduces the time and effort spent on manually updating all platforms with HR related data. This ensures that employees are able to focus more on value add tasks, leading to increased productivity and an improved employee experience.
  • Reduced errors: Manual data entry is prone to errors. For instance, if during payroll updation, the compensation of an employee is entered incorrectly and differently from HRIS data, the employee will receive incorrect compensation, leading to regulatory/ financial discrepancies and employee displeasure. 
  • End customer satisfaction: This is specifically for customer-facing HRIS integrations. By facilitating integration with your end customer’s HRIS applications and your product, you can foster automated data sync between the applications, eliminating the need for the customer to manually give you access to the data needed. This considerably augments customer experience and satisfaction.
  • Expanded customer base: The ability to offer integrations with associated applications like payroll, attendance, etc. is something that most HR professionals seek. Therefore, when an application offers integrations with a wide range of HRIS, the total addressable market or TAM, significantly increases, augmenting the overall reach and potential customers. 

HRIS API Data Models Explained

The different HRIS tools you use are bound to come with different data models or fields which will capture data for exchange between applications. It is important for HR professionals and those building and managing these integrations to understand these data models, especially to ensure normalization and transformation of data when it moves from one application to another. 

Employees/ Employee Profiles

This includes details of all employees whether full time or contractual, including first and last name, contact details, date of birth, email ID, etc. At the same time, it covers other details on demographics and employment history including status, start date, marital status, gender, etc. In case of a former employee, this field also captures termination date. 

Employee Contact Details

This includes personal details of the employee, including personal phone number, address, etc. which can be used to contact employees beyond work contact information. 

Employee Profile Picture

Employee profile picture object or data model captures the profile picture of the employees that can be used across employee records and purposes. 

Employment Type

The next data model in discussion focuses on the type or the nature of employment. An organization can hire full time employees, contractual workers, gig workers, volunteers, etc. This distinction in employment type helps differentiate between payroll specifications, taxation rules, benefits, etc. 

Location

Location object or data model refers to the geographical area for the employee. Here, both the work location as well as the residential or native/ home location of the employee is captured. This field captures address, country, zip code, etc. 

Leave Request

Leave request data model focuses on capturing all the time off or leave of absence entries made by the employee. It includes detailing the nature of leave, time period, status, reason, etc.

Leave Balance

Each employee, based on their nature of employment, is entitled to certain time off in a year. The leave balance object helps organizations keep a track of the remaining balance of leave of absence left with the employee. With this, organizations can ensure accurate payroll, benefits and compensation. 

Attendance 

This data model captures the attendance of employees, including fields like time in, time out, number of working hours, shift timing, status, break time, etc. 

Organizational Structure

Each organization has a hierarchical structure or layers which depict an employee’s position in the whole scheme of things. The organizational structure object helps understand an employee’s designation, department, manager (s), direct reportees, etc. 

Bank Details

This data model focuses on capturing the bank details of the employee, along with other financial details like a linked account for transfer of salary and other benefits that the employee is entitled to. In addition, it captures routing information like Swift Code, IFSC Code, Branch Code, etc. 

Dependents

Dependents object focuses on the family members of an employee or individuals who the employee has confirmed as dependents for purposes of insurance, family details, etc. This also includes details of employees’ dependents including their date of birth, relation to the employee, among others. 

KYC

This includes the background verification and other details about an employee with some identification proof and KYC (know your customer) documents. This is essential for companies to ensure their employees are well meaning citizens of the country meeting all compliances to work in that location. It captures details like Aadhar Number, PAN Number or unique identification number for the KYC document. 

Compensation

This data model captures all details related to compensation for an employee, including total compensation/ cost to company, compensation split, salary in hand, etc. It also includes details on fixed compensation, variable pay as well as stock options. Compensation object also captures the frequency of salary payment, pay period, etc. 

HRIS API Integration Best Practices for Developers

To help you leverage the benefits of HRIS API integrations, here are a few best practices that developers and teams that are managing integrations can adopt:

Prioritize which HRIS integrations are needed for efficient resource allocation

This is extremely important if you are building integrations in-house or wish to connect with HRIS APIs in a 1:1 model. Building each HRIS integration or connecting with each HR application in-house can take four weeks on an average, with an associated cost of ~$10K. Therefore, it is essential to prioritize which HRIS integrations are pivotal for the short term versus which ones can be pushed to a later period. If developers focus all their energy in building all HRIS integrations at once, it may lead to delays in other product features. 

Understand the HRIS API before integrating with it

Developers should spend sufficient time in researching and understanding each individual HRIS API they are integrating with, especially in a 1:1 case. For instance, REST vs SOAP APIs have different protocols and thus, must be navigated in different ways. Similarly, the API data model, URL and the way the HRIS API receives and sends data will be distinct across each application. Developers must understand the different URLs and API endpoints for staging and live environments, identify how the HRIS API reports errors and how to respond to them, the supported data formats (JSON/ XML), etc.  

Stay up to date with API versioning

As HRIS vendors add new features, functionalities and update the applications, the APIs keep changing. Thus, as a best practice, developers must support API versioning to ensure that any changes can be updated without impacting the integration workflow and compatibility. To ensure conducive API versioning, developers must regularly update to the latest version of the API to prevent any disruption when the old version is removed. Furthermore, developers should eliminate the reliance on or usage of deprecated features, endpoints or parameters and facilitate the use of fallbacks or system alter notifications for unprecedented changes. 

Set appropriate rate limits and review them regularly

When building and managing integrations in-house, developers must be conscious and cautious about rate limiting. Overstepping the rate limit can prevent API access, leading to integration workflow disruption. To facilitate this, developers should collaboratively work with the API provider to set realistic rate limits based on the actual usage. At the same time, it is important to constantly review rate limits against the usage and preemptively upgrade the same in case of anticipated exhaustion. Also, developers should consider scenarios and brainstorm with those who use the integration processes the maximum to identify ways to optimize API usage.

Document HR integration process for each HRIS

Documenting the integration process for each HRIS is extremely important. It ensures there is a clear record of everything about that integration in case a developer leaves the organization, fostering integration continuity and seamless error handling. Furthermore, it enhances the long-term maintainability of the HRIS API integration. A comprehensive document generally captures the needs and objectives of the integration, authentication methods, rate limits, API types and protocols, testing environments, safety net in case the API is discontinued, common troubleshooting errors and handling procedures, etc. At the same time this documentation should be stored in a centralized repository which is easily accessible. 

Test HRIS integrations across different scenarios

HRIS integration is only complete once it is tested across different settings and they continue to deliver consistent performance. Testing is also an ongoing process, because everytime there is an update in the API of the third-party application, testing is needed, and so is the case whenever there is an update in one’s own application. To facilitate robust testing, automation is the key. Additionally, developers can set up test pipelines and focus on monitoring and logging of issues. It is also important to check for backward compatibility, evaluate error handling implementation and boundary values and keep the tests updated. 

Guides to popular HRIS APIs

Each HRIS API in the market will have distinct documentation highlighting its endpoints, authentication methods, etc. To make HRIS API integration for developers simpler, we have created a repository of different HR application directories, detailing how to navigate integrations with them:

Common HRIS API Integration Challenges 

While there are several benefits of HRIS API integration, the process is fraught with obstacles and challenges, including:

Diversity of HRIS API providers

Today, there are 1000s of HR applications in the market which organizations use. This leads to a huge diversity of HRIS API providers. Within the HRIS category, the API endpoints, type of API (REST vs SOAP), data models, syntax, authentication measures and standards, etc. can vary significantly. This poses a significant challenge for developers who have to individually study and understand each HRIS API before integration. At the same time, the diversity also contributes to making the integration process time consuming and resource intensive.

Lack of public APIs and robust documentation

The next challenge comes from the fact that not all HRIS APIs are publicly available. This means that these gated APIs require organizations to get into partnership agreements with them in order to access API key, documentation and other resources. Furthermore, the process of partnering is not always straightforward either. It ranges from background and security checks to lengthy negotiations, and at times come at a premium cost associated. At the same time, even when APIs are public, their documentation is often poor, incomplete and difficult to understand, adding another layer of complexity to building and maintaining HRIS API integrations. 

Difficulty in testing across environments

As mentioned in one of the sections above, testing is an integral part of HRIS API integration. However, it poses a significant challenge for many developers. On the one hand, not every API provider offers testing environments to build against, pushing developers to use real customer data. On the other hand, even if the testing environment is available, running integrations against the same, requires thorough understanding and a steep learning curve for SaaS product developers. Overall, testing becomes a major roadblock, slowing down the process of building and maintaining integrations. 

Maintaining data quality and standardization

When it comes to HRIS API integration, there are several data related challenges that developers face across the way. To begin with, different HR providers are likely to share the same information in different formats, fields and names. Furthermore, data may also not come in a simple format, forcing developers to collect and calculate the data to decipher some values out of it. Data quality adds another layer of challenges. SInce standardizing and transforming data into a unified format is difficult, ensuring its accuracy, timeliness, and consistency is a big obstacle for developers.  

Scaling HRIS integrations

Scaling HRIS API integrations can be a daunting task, especially when integrations have to be built 1:1, in-house. Since building each integration requires developers to understand the API documentation, decipher data complexities, create custom codes and manage authentication, the process is difficult to scale. While building a couple of integrations for internal use might be feasible, scaling customer-facing integrations leads to a high level of inefficient resource use and developer fatigue. 

Post integration maintenance

Keeping up with third-party APIs and integration maintenance is another challenge that developers face. To begin with as the API versions update and change, HRIS API integration must reflect those changes to ensure usability and compatibility. However API documentation seldom reflects these changes, making it a cumbersome task for developers to keep pace with the changes. And, the inability to update API versioning can lead to broken integrations, endpoints and consistency issues. Furthermore, monitoring and logging, necessary to monitor the health of integrations can be a big challenge, with an additional resource allocation towards checking logs and addressing errors promptly. Managing rate limiting and throttling are some of the other post integration maintenance challenges that developers tend to face. 

Building Your First HRIS Integration with Knit: Step-by-Step Guide

Building Your First E-Signature Integration with Knit

Knit provides a unified HRIS API that streamlines the integration of HRIS solutions. Instead of connecting directly with multiple HRIS APIs, Knit allows you to connect with top providers like Workday, Successfactors, BambooHr, and many others through a single integration.

Learn more about the benefits of using a unified API.

Getting started with Knit is simple. In just 5 steps, you can embed multiple HRIS integrations into your APP.

Steps Overview:

  1. Create a Knit Account: Sign up for Knit to get started with their unified API. You will be taken through a getting started flow.
  2. Select Category: Select HRIS from the list of available option on the Knit dashboard
  3. Register Webhook: Since one of the use cases of HRIS integrations is to sync data at frequent intervals, Knit supports scheduled data syncs for this category. Knit operates on a push based sync model, i.e. it reads data from the source system and pushes it to you over a webhook, so you don’t have to maintain a polling infrastructure at your end. In this step, Knit expects you to tell us the webhook over which it needs to push the source data.
  4. Set up Knit UI to start integrating with APPs: In this step you get your API key and integrate with the HRIS APP of your choice from the frontend.
  5. Fetch data and make API calls: That’s it! It’s time to start syncing data and making API calls and take advantage of Knit unified APIs and its data models. 

For detailed integration steps with the unified HRIS APIt, visit:

Security Considerations for HRIS API Integrations

Security happens to be one of the main tenets of HRIS API integration, determining its success and effectiveness. As HRIS API integration facilitates transmission, exchange and storage of sensitive employee data and related information, security is of utmost importance. 

HRIS API endpoints are highly vulnerable to unauthorized access attempts. The lack of robust security protocols, these vulnerabilities can be exploited and attackers can gain access to sensitive HR information. On the one hand, this can lead to data breaches and public exposure of confidential employee data. On the other hand, it can disrupt the existing systems and create havoc. Here are the top security considerations and best practices to keep in mind for HRIS API integration. 

Broken authentication tokens and unauthorized access

Authentication is the first step to ensure HRIS API security. It seeks to verify or validate the identity of a user who is trying to gain access to an API, and ensures that the one requesting the access is who they claim to be. The top authentication protocols include:

  • OAuth: It is commonly used to grant third-party applications limited access to user data from other services without exposing user credentials with the third party. It uses access tokens, which are temporary and short lived. 
  • Bearer tokens: They are stateless, time-bound access tokens which are simple for one time use, but need to be protected as anyone with access to them can access the API. 
  • API keys: Facilitating server-to-server communication, these long-lived secret keys are ideal for trusted parties or internal use. 
  • JSON Web Tokens: A token-based authentication method with a self-contained nature, facilitates scalable and secure access. 
  • Basic Auth: Involves sending a username and password in the API request header in the form of Base64-encoded credentials.

Most authentication methods rely on API tokens. However, when they are not securely generated, stored, or transmitted, they become vulnerable to attacks. Broken authentication can grant access to attackers, which can cause session hijacking, giving the attackers complete control over the API session. Hence, securing API tokens and authentication protocols is imperative. Practices like limiting the lifespan of your tokens/API keys, via time-based or event-based expiration as well as securing credentials in secret vault services can. 

Data exposure during transmission

As mentioned, HRIS API integration involves transmission and exchange of sensitive and confidential employee information. However, if the data is not encrypted during transmission it is vulnerable to attacker interception. This can happen when APIs use insecure protocols (HTTP instead of HTTPS), data is transmitted as plain text without encryption, there is insufficient data masking and validation. 

To facilitate secure data transmission, it is important to use HTTPS, which uses Transport Layer Security (TLS) or its predecessor, Secure Sockets Layer (SSL), to encrypt data and can only be decrypted when it reaches the intended recipient. 

Input validation failure

Input validation failures can increase the incidence of injection attacks in HRIS API integrations. These attacks, primarily SQL injection and cross-site scripting (XSS), manipulate input data or untrusted data is injected into the database queries. This enables attackers to execute unauthorized database operations, potentially accessing or modifying sensitive information.

Practices like input validation, output encoding, and the principle of least privilege, can help safeguard against injection vulnerabilities. Similarly, for database queries, using parameterized statements instead of injecting user inputs directly into SQL queries, can help mitigate the threat. 

Denial of service attacks and rate limiting

HRIS APIs are extremely vulnerable to denial of service (DoS) attacks where attackers flood your systems with excessive requests which it is not able to process, leading to disruption and temporarily restricts its functionality. Human errors, misconfigurations or even compromised third party applications can lead to this particular security challenge. 

Rate limiting and throttling are effective measures that help prevent the incidence of DoS attacks, protecting APIs against excessive or abusive use and facilitating equitable request distribution between customers. While rate limiting restricts the number of requests or API calls that can be made in a specified time period, throttling slows down the processing of requests, instead of restricting them. Together, these act as robust measures to prevent excessive use attacks by perpetrators, and even protects against brute-force attacks. 

Third party security risks and ongoing threats

Third party security concerns i.e. how secure or vulnerable the third-party applications which you are integrating with, have a direct impact on the security posture of your HRIS API integration. Furthermore, threats and vulnerabilities come in without any prompt, making them unwanted guests. 

To address the security concerns of third-party applications, it is important to thoroughly review the credibility and security posture of the software you integrate with. Furthermore, be cautious of the level of access you grant, sticking to the minimum requirement. It is equally important to monitor security updates and patch management along with a prepared contingency plan to mitigate the risk of security breaches and downtime in case the third-party application suffers a breach. 

Furthermore, API monitoring and logging are critical security considerations for HRIS API integration. While monitoring involves continuous tracking of API traffic, logging entails maintaining detailed historical records of all API interactions. Together they are invaluable for troubleshooting, debugging, fostering trigger alerts in case security thresholds have been breached. In addition, regular security audits and penetration testing are extremely important. While security audits ensure the review of an API's design, architecture, and implementation to identify security weaknesses, misconfigurations, and best practice violations, penetration testing simulates cyberattacks to identify vulnerabilities, weaknesses, and potential entry points that malicious actors could exploit. These practices help mitigate ongoing security threats and facilitate API trustworthiness. 

Security with Knit’s HRIS API

When dealing with a large number of HRIS API integrations, security considerations and challenges increase exponentially. In such a situation, a unified API like Knit can help address all concerns effectively. Knit’s HRIS API ensures safe and high quality data access by:

  • Complying with industry best practices and security standards with SOC2, GDPR and ISO27001 certifications. 
  • Monitoring Knit's infrastructure continuously with the finest intrusion detection systems. 
  • Being the only unified API in the market that does not store any of your end user’s data in its servers.
  • Encrypting all data doubly, when in transit and when at rest.
  • Facilitating an additional layer of application security for encrypting PII and user credentials.
  • Using a detailed Logs, Issues, Integrated Accounts and Syncs page to monitor and manage all integrations and keep track of every API request, call or data sync. 

HRIS API Use Cases: Real-World Examples

Here’s a quick snapshot of how HRIS integration can be used across different scenarios.

HRIS integration for ATS tools

ATS or applicant tracking system can leverage HRIS integration to ensure that all important and relevant details about new employees, including name, contact information, demographic and educational backgrounds, etc. are automatically updated into the customer’s preferred HRIS tool without the need to manually entering data, which can lead to inaccuracies and is operationally taxing. ATS tools leverage the write HRIS API and provide data to the HR tools in use.   

Examples: Greenhouse Software, Workable, BambooHR, Lever, Zoho

HRIS integration for payroll software

Payroll software plays an integral role in any company’s HR processes. It focuses on ensuring that everything related to payroll and compensation for employees is accurate and up to date. HRIS integration with payroll software enables the latter to get automated and real time access to employee data including time off, work schedule, shifts undertaken, payments made on behalf of the company, etc. 

At the same time, it gets access to employee data on bank details, tax slabs, etc. Together, this enables the payroll software to deliver accurate payslips to its customers, regarding the latter’s employees. With automated integration, data sync can be prone to errors, which can lead to faulty compensation disbursal and many compliance challenges. HRIS integration, when done right, can alert the payroll software with any new addition to the employee database in real time to ensure setting up of their payroll immediately. At the same time, once payslips are made and salaries are disbursed, payroll software can leverage HRIS integration to write back this data into the HR software for records. 

‍Examples: Gusto, RUN Powered by ADP, Paylocity, Rippling

HRIS integration for employee onboarding/ offboarding software

Employee onboarding software uses HRIS integration to ensure a smooth onboarding process, free of administrative challenges. Onboarding tools leverage the read HRIS APIs to get access to all the data for new employees to set up their accounts across different platforms, set up payroll, get access to bank details, benefits, etc.

With HRIS integrations, employee onboarding software can provide their clients with automated onboarding support without the need to manually retrieve data for each new joiner to set up their systems and accounts. Furthermore, HRIS integration also ensures that when an employee leaves an organization, the update is automatically communicated to the onboarding software to push deprovisioning of the systems, and services. This also ensures that access to any tools, files, or any other confidential access is terminated. Manually deprovisioning access can lead to some manual errors, and even cause delays in exit formalities. 

Examples: Deel, Savvy, Sappling

Ease of communication and announcements

With the right HRIS integration, HR teams can integrate all relevant data and send out communication and key announcements in a centralized manner. HRIS integrations ensure that the announcements reach all employees on the correct contact information without the need for HR teams to individually communicate the needful. 

HRIS integration for LMS tools

LMS tools leverage both the read and write HRIS APIs. On the one hand, they read or get access to all relevant employee data including roles, organizational structure, skills demand, competencies, etc. from the HRIS tool being used. Based on this data, they curate personalized learning and training modules for employees for effective upskilling. Once the training is administered, the LMS tools again leverage HRIS integrations to write data back into the HRIS platform with the status of the training, including whether or not the employee has completed the same, how did they perform, updating new certifications, etc. Such integration ensures that all learning modules align well with employee data and profiles, as well as all training are captured to enhance the employee’s portfolio. 

Example: TalentLMS, 360Learning, Docebo, Google Classroom

HRIS integration for workforce management and scheduling tools 

Similar to LMS, workforce management and scheduling tools utilize both read and write HRIS APIs. The consolidated data and employee profile, detailing their competencies and training undertaken can help workforce management tools suggest the best delegation of work for companies, leading to resource optimization. On the other hand, scheduling tools can feed data automatically with HRIS integration into HR tools about the number of hours employees have worked, their time off, free bandwidth for allocation, shift schedules etc. HRIS integration can help easily sync employee work schedules and roster data to get a clear picture of each employee’s schedule and contribution. 

Examples: QuickBooks Time, When I Work

HRIS integration for benefits administration tools

HRIS integration for benefits administration tools ensures that employees are provided with the benefits accurately, customized to their contribution and set parameters in the organization. Benefits administration tools can automatically connect with the employee data and records of their customers to understand the benefits they are eligible for based on the organizational structure, employment type, etc. They can read employee data to determine the benefits that employees are entitled to. Furthermore, based on employee data, they feed relevant information back into the HR software, which can further be leveraged by payroll software used by the customers to ensure accurate payslip creation. 

‍Examples: TriNet Zenefits, Rippling, PeopleKeep, Ceridian Dayforce

HRIS integration for workforce planning tools

Workforce planning tools essentially help companies identify the gap in their talent pipeline to create strategic recruitment plans. They help understand the current capabilities to determine future hiring needs. HRIS integration with such tools can help automatically sync the current employee data, with a focus on organizational structure, key competencies, training offered, etc. Such insights can help workforce planning tools accurately manage talent demands for any organization. At the same time, real time sync with data from HR tools ensures that workforce planning can be updated in real time. 

HRIS API Integration Error Handling

There are several reasons why HRIS API integrations fail, highlighting that there can be a variety of errors. Invariably, teams need to be equipped to efficiently handle any integration errors, ensuring error resolution in a timely manner, with minimal downtime. Here are a few points to facilitate effective HRIS API integration error handling. 

Understand the types of errors

Start with understanding the types of errors or response codes that come in return of an API call. Some of the common error codes include:

  • 404 Not Found: The requested resource doesn’t exist or isn’t available
  • 429 Too Many Requests: API call request rate limit has been reached or exceeded
  • 401 Unauthorized: Lack of authorization or privileges to access the particular resource
  • 500 Internal Server Error: Issue found at the server’s end

While these are some, there are other error codes which are common in nature and, thus, proactive resolution should be available. 

Configure the monitoring system to incorporate all error details

All errors are generally captured in the monitoring system the business uses for tracking issues. For effective HRIS API error handling, it is imperative that the monitoring system be configured in such a way that it not only captures the error code but also any other relevant details that may be displayed along with it. These can include a longer descriptive message detailing the error, a timestamp, suggestion to address the error, etc. Capturing these can help developers with troubleshooting the challenge and resolve the issues faster. 

Use exponential back-offs to increase API call intervals

This error handling technique is specifically beneficial for rate limit errors or whenever you exceed your request quota. Exponential backoffs allow users to retry specific API calls at an increasing interval to retrieve any missed information. The request may be retrieved in the subsequent window. This is helpful as it gives the system time to recover and reduces the number of failed requests due to rate limits and even saves the costs associated with these unnecessary API calls. 

Test, document and review error handling process

It is very important to test the error handling processes by running sandbox experiments and simulated environment testing. Ideally, all potential errors should be tested for, to ensure maximum efficiency. However, in case of time and resource constraints, the common errors mentioned above, including HTTP status code errors, like 404 Not Found, 401 Unauthorized, and 503 Service Unavailable, must be tested for. 

In addition to robust testing, every step of the error handling process must be documented. Documentation ensures that even in case of engineering turnover, your HRIS API integrations are not left to be poorly maintained with new teams unable to handle errors or taking longer than needed. At the same time, having comprehensive error handling documentation can make any knowledge transfer to new developers faster. Ensure that the documentation not only lists the common errors, but also details each step to address the issues with case studies and provides a contingency plan for immediate business continuity. 

Furthermore, reviewing and refining the error handling process is imperative. As APIs undergo changes, it is normal for initial error handling processes to fail and not perform as expected. Therefore, error handling processes must be consistently reviewed and upgraded to ensure relevance and performance. 

API error handling with Knit

Knit’s HRIS API simplifies the error handling process to a great extent. As a unified API, it helps businesses automatically detect and resolve HRIS API integration issues or provide the customer-facing teams with quick resolutions. Businesses do not have to allocate resources and time to identify issues and then figure out remedial steps. For instance, Knit’s retry and delay mechanisms take care of any API errors arising due to rate limits. 

TL:DR

It is evident that HRIS API integration is no longer a good to have, but an imperative for businesses to manage all employee related operations. Be it integrating HRIS and other applications internally or offering customer facing integrations, there are several benefits that HRIS API integration brings along, ranging from reduced human error to greater productivity, customer satisfaction, etc. When it comes to offering customer-facing integrations, ATS, payroll, employee onboarding/ offboarding, LMS tools are a few among the many providers that see value with real world use cases. 

However, HRIS API integration is fraught with challenges due to the diversity of HR providers and the different protocols, syntax, authentication models, etc. they use. Scalining integrations, testing across different environments, security considerations, data normalization, all create multidimensional challenges for businesses. Invariably, businesses are now going the unified API way to build and manage their HRIS API integration. Knit’s unified HRIS API ensures:

  • One unified API to connect with all HRIS tools you need
  • Single unified data model for seamless data normalization and exchange
  • Compliance to the highest security standards like SOC2, GDPR, ISO27001, HIPAA
  • Option to authenticate the way you want, including, OAuth, API key or a username-password based authentication
  • 100% webhooks architecture that send out notification whenever updated data is available
  • Guaranteed scalability and delivery of HR data irrespective of data load
  • High level of security as Knit doesn’t store a copy of your data
  • Option to read and write data from any app from any HRIS category
  • Option to limit data sync and API calls to only what you need
  • Double encryption when in transit and when at rest with addition PII layer
  • Detailed Logs, Issues, Integrated Accounts and Syncs page to easily monitor HRIS integrations
  • Custom fields to manage any non-standard HRIS data

Knit’s HRIS API ensures a high ROI for companies with a single type of authentication, pagination, rate limiting, and automated issue detection making the HRIS API integration process simple.

#1 in Ease of Integrations

Trusted by businesses to streamline and simplify integrations seamlessly with GetKnit.