ATS Integration : An In-Depth Guide With Key Concepts And Best Practices
Read more

Read more
All the hot and popular Knit API resources
Jira is one of those tools that quietly powers the backbone of how teams work—whether you're NASA tracking space-bound bugs or a startup shipping sprints on Mondays. Over 300,000 companies use it to keep projects on track, and it’s not hard to see why.
This guide is meant to help you get started with Jira’s API—especially if you’re looking to automate tasks, sync systems, or just make your project workflows smoother. Whether you're exploring an integration for the first time or looking to go deeper with use cases, we’ve tried to keep things simple, practical, and relevant.
At its core, Jira is a powerful tool for tracking issues and managing projects. The Jira API takes that one step further—it opens up everything under the hood so your systems can talk to Jira automatically.
Think of it as giving your app the ability to create tickets, update statuses, pull reports, and tweak workflows—without anyone needing to click around. Whether you're building an integration from scratch or syncing data across tools, the API is how you do it.
It’s well-documented, RESTful, and gives you access to all the key stuff: issues, projects, boards, users, workflows—you name it.
Chances are, your customers are already using Jira to manage bugs, tasks, or product sprints. By integrating with it, you let them:
It’s a win-win. Your users save time by avoiding duplicate work, and your app becomes a more valuable part of their workflow. Plus, once you set up the integration, you open the door to a ton of automation—like auto-updating statuses, triggering alerts, or even creating tasks based on events from your product.
Before you dive into the API calls, it's helpful to understand how Jira is structured. Here are some basics:
Each of these maps to specific API endpoints. Knowing how they relate helps you design cleaner, more effective integrations.
To start building with the Jira API, here’s what you’ll want to have set up:
If you're using Jira Cloud, you're working with the latest API. If you're on Jira Server/Data Center, there might be a few quirks and legacy differences to account for.
Before you point anything at production, set up a test instance of Jira Cloud. It’s free to try and gives you a safe place to break things while you build.
You can:
Testing in a sandbox means fewer headaches down the line—especially when things go wrong (and they sometimes will).
The official Jira API documentation is your best friend when starting an integration. It's hosted by Atlassian and offers granular details on endpoints, request/response bodies, and error messages. Use the interactive API explorer and bookmark sections such as Authentication, Issues, and Projects to make your development process efficient.
Jira supports several different ways to authenticate API requests. Let’s break them down quickly so you can choose what fits your setup.
Basic authentication is now deprecated but may still be used for legacy systems. It consists of passing a username and password with every request. While easy, it does not have strong security features, hence the phasing out.
OAuth 1.0a has been replaced by more secure protocols. It was previously used for authorization but is now phased out due to security concerns.
For most modern Jira Cloud integrations, API tokens are your best bet. Here’s how you use them:
It’s simple, secure, and works well for most use cases.
If your app needs to access Jira on behalf of users (with their permission), you’ll want to go with 3-legged OAuth. You’ll:
It’s a bit more work upfront, but it gives you scoped, permissioned access.
If you're building apps *inside* the Atlassian ecosystem, you'll either use:
Both offer deeper integrations and more control, but require additional setup.
Whichever method you use, make sure:
A lot of issues during integration come down to misconfigured auth—so double-check before you start debugging the code.
Once you're authenticated, one of the first things you’ll want to do is start interacting with Jira issues. Here’s how to handle the basics: create, read, update, delete (aka CRUD).
To create a new issue, you’ll need to call the `POST /rest/api/3/issue` endpoint with a few required fields:
{
"fields": {
"project": { "key": "PROJ" },
"issuetype": { "name": "Bug" },
"summary": "Something’s broken!",
"description": "Details about the bug go here."
}
}
At a minimum, you need the project key, issue type, and summary. The rest—like description, labels, and custom fields—are optional but useful.
Make sure to log the responses so you can debug if anything fails. And yes, retry logic helps if you hit rate limits or flaky network issues.
To fetch an issue, use a GET request:
GET /rest/api/3/issue/{issueIdOrKey}
You’ll get back a JSON object with all the juicy details: summary, description, status, assignee, comments, history, etc.
It’s pretty handy if you’re syncing with another system or building a custom dashboard.
Need to update an issue’s status, add a comment, or change the priority? Use PUT for full updates or PATCH for partial ones.
A common use case is adding a comment:
{
"body": "Following up on this issue—any updates?"
}
Make sure to avoid overwriting fields unintentionally. Always double-check what you're sending in the payload.
Deleting issues is irreversible. Only do it if you're absolutely sure—and always ensure your API token has the right permissions.
It’s best practice to:
Confirm the issue should be deleted (maybe with a soft-delete flag first)
Keep an audit trail somewhere. Handle deletion errors gracefully
Jira comes with a powerful query language called JQL (Jira Query Language) that lets you search for precise issues.
Want all open bugs assigned to a specific user? Or tasks due this week? JQL can help with that.
Example: project = PROJ AND status = "In Progress" AND assignee = currentUser()
When using the search API, don’t forget to paginate: GET /rest/api/3/search?jql=yourQuery&startAt=0&maxResults=50
This helps when you're dealing with hundreds (or thousands) of issues.
The API also allows you to create and manage Jira projects. This is especially useful for automating new customer onboarding.
Use the `POST /rest/api/3/project` endpoint to create a new project, and pass in details like the project key, name, lead, and template.
You can also update project settings and connect them to workflows, issue type schemes, and permission schemes.
If your customers use Jira for agile, you’ll want to work with boards and sprints.
Here’s what you can do with the API:
- Fetch boards (`GET /board`)
- Retrieve or create sprints
- Move issues between sprints
It helps sync sprint timelines or mirror status in an external dashboard.
Jira Workflows define how an issue moves through statuses. You can:
- Get available transitions (`GET /issue/{key}/transitions`)
- Perform a transition (`POST /issue/{key}/transitions`)
This lets you automate common flows like moving an issue to "In Review" after a pull request is merged.
Jira’s API has some nice extras that help you build smarter, more responsive integrations.
You can link related issues (like blockers or duplicates) via the API. Handy for tracking dependencies or duplicate reports across teams.
Example:
{
"type": { "name": "Blocks" },
"inwardIssue": { "key": "PROJ-101" },
"outwardIssue": { "key": "PROJ-102" }
}
Always validate the link type you're using and make sure it fits your project config.
Need to upload logs, screenshots, or files? Use the attachments endpoint with a multipart/form-data request.
Just remember:
Want your app to react instantly when something changes in Jira? Webhooks are the way to go.
You can subscribe to events like issue creation, status changes, or comments. When triggered, Jira sends a JSON payload to your endpoint.
Make sure to:
Understanding the differences between Jira Cloud and Jira Server is critical:
Keep updated with the latest changes by monitoring Atlassian’s release notes and documentation.
Even with the best setup, things can (and will) go wrong. Here’s how to prepare for it.
Jira’s API gives back standard HTTP response codes. Some you’ll run into often:
Always log error responses with enough context (request, response body, endpoint) to debug quickly.
Jira Cloud has built-in rate limiting to prevent abuse. It’s not always published in detail, but here’s how to handle it safely:
If you’re building a high-throughput integration, test with realistic volumes and plan for throttling.
To make your integration fast and reliable:
These small tweaks go a long way in keeping your integration snappy and stable.
Getting visibility into your integration is just as important as writing the code. Here's how to keep things observable and testable.
Solid logging = easier debugging. Here's what to keep in mind:
If something breaks, good logs can save hours of head-scratching.
When you’re trying to figure out what’s going wrong:
Also, if your app has logs tied to user sessions or sync jobs, make those searchable by ID.
Testing your Jira integration shouldn’t be an afterthought. It keeps things reliable and easy to update.
The goal is to have confidence in every deploy—not to ship and pray.
Let’s look at a few examples of what’s possible when you put it all together:
Trigger issue creation when a bug or support request is reported:
curl --request POST \
--url 'https://your-domain.atlassian.net/rest/api/3/issue' \
--user 'email@example.com:<api_token>' \
--header 'Accept: application/json' \
--header 'Content-Type: application/json' \
--data '{
"fields": {
"project": { "key": "PROJ" },
"issuetype": { "name": "Bug" },
"summary": "Bug in production",
"description": "A detailed bug report goes here."
}
}'
Read issue data from Jira and sync it to another tool:
bash
curl -u email@example.com:API_TOKEN -X GET \ https://your-domain.atlassian.net/rest/api/3/issue/PROJ-123
Map fields like title, status, and priority, and push updates as needed.
Use a scheduled script to move overdue tasks to a "Stuck" column:
```python
import requests
import json
jira_domain = "https://your-domain.atlassian.net"
api_token = "API_TOKEN"
email = "email@example.com"
headers = {"Content-Type": "application/json"}
# Find overdue issues
jql = "project = PROJ AND due < now() AND status != 'Done'"
response = requests.get(f"{jira_domain}/rest/api/3/search",
headers=headers,
auth=(email, api_token),
params={"jql": jql})
for issue in response.json().get("issues", []):
issue_key = issue["key"]
payload = {"transition": {"id": "31"}} # Replace with correct transition ID
requests.post(f"{jira_domain}/rest/api/3/issue/{issue_key}/transitions",
headers=headers,
auth=(email, api_token),
data=json.dumps(payload))
```
Automations like this can help keep boards clean and accurate.
Security's key, so let's keep it simple:
Think of API keys like passwords.
Secure secrets = less risk.
If you touch user data:
Quick tips to level up:
Libraries (Java, Python, etc.) can help with the basics.
Your call is based on your needs.
Automate testing and deployment.
Reliable integration = happy you.
If you’ve made it this far—nice work! You’ve got everything you need to build a powerful, reliable Jira integration. Whether you're syncing data, triggering workflows, or pulling reports, the Jira API opens up a ton of possibilities.
Here’s a quick checklist to recap:
Jira is constantly evolving, and so are the use cases around it. If you want to go further:
- Follow [Atlassian’s Developer Changelog]
- Explore the [Jira API Docs]
- Join the [Atlassian Developer Community]
And if you're building on top of Knit, we’re always here to help.
Drop us an email at hello@getknit.dev if you run into a use case that isn’t covered.
Happy building! 🙌
Sage Intacct API integration allows businesses to connect financial systems with other applications, enabling real-time data synchronization and reducing errors and missed opportunities. Manual data transfers and outdated processes can lead to errors and missed opportunities. This guide explains how Sage Intacct API integration removes those pain points. We cover the technical setup, common issues, and how using Knit can cut down development time while ensuring a secure connection between your systems and Sage Intacct.
Sage Intacct API integration integrates your financial and ERP systems with third-party applications. It connects your financial information and tools used for reporting, budgeting, and analytics.
The Sage Intacct API documentation provides all the necessary information to integrate your systems with Sage Intacct’s financial services. It covers two main API protocols: REST and SOAP, each designed for different integration needs. REST is commonly used for web-based applications, offering a simple and flexible approach, while SOAP is preferred for more complex and secure transactions.
By following the guidelines, you can ensure a secure and efficient connection between your systems and Sage Intacct.
Integrating Sage Intacct with your existing systems offers a host of advantages.
Before you start the integration process, you should properly set up your environment. Proper setup creates a solid foundation and prevents most pitfalls.
A clear understanding of Sage Intacct’s account types and ecosystem is vital.
A secure environment protects your data and credentials.
Setting up authentication is crucial to secure the data flow.
An understanding of the different APIs and protocols is necessary to choose the best method for your integration needs.
Sage Intacct offers a flexible API ecosystem to fit diverse business needs.
The Sage Intacct REST API offers a clean, modern approach to integrating with Sage Intacct.
Curl request:
curl -i -X GET \ 'https://api.intacct.com/ia/api/v1/objects/cash-management/bank-acount {key}' \-H 'Authorization: Bearer <YOUR_TOKEN_HERE>'
Here’s a detailed reference to all the Sage Intacct REST API Endpoints.
For environments that need robust enterprise-level integration, the Sage Intacct SOAP API is a strong option.
Each operation is a simple HTTP request. For example, a GET request to retrieve account details:
Parameters for request body:
<read>
<object>GLACCOUNT</object>
<keys>1</keys>
<fields>*</fields>
</read>
Data format for the response body:
Here’s a detailed reference to all the Sage Intacct SOAP API Endpoints.
Comparing SOAP versus REST for various scenarios:
Beyond the primary REST and SOAP APIs, Sage Intacct provides other modules to enhance integration.
Now that your environment is ready and you understand the API options, you can start building your integration.
A basic API call is the foundation of your integration.
Step-by-step guide for a basic API call using REST and SOAP:
REST Example:
Example:
Curl Request:
curl -i -X GET \
https://api.intacct.com/ia/api/v1/objects/accounts-receivable/customer \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>'
Response 200 (Success):
{
"ia::result": [
{
"key": "68",
"id": "CUST-100",
"href": "/objects/accounts-receivable/customer/68"
},
{
"key": "69",
"id": "CUST-200",
"href": "/objects/accounts-receivable/customer/69"
},
{
"key": "73",
"id": "CUST-300",
"href": "/objects/accounts-receivable/customer/73"
}
],
"ia::meta": {
"totalCount": 3,
"start": 1,
"pageSize": 100
}
}
Response 400 (Failure):
{
"ia::result": {
"ia::error": {
"code": "invalidRequest",
"message": "A POST request requires a payload",
"errorId": "REST-1028",
"additionalInfo": {
"messageId": "IA.REQUEST_REQUIRES_A_PAYLOAD",
"placeholders": {
"OPERATION": "POST"
},
"propertySet": {}
},
"supportId": "Kxi78%7EZuyXBDEGVHD2UmO1phYXDQAAAAo"
}
},
"ia::meta": {
"totalCount": 1,
"totalSuccess": 0,
"totalError": 1
}
}
SOAP Example:
Example snippet of creating a reporting period:
<create>
<REPORTINGPERIOD>
<NAME>Month Ended January 2017</NAME>
<HEADER1>Month Ended</HEADER1>
<HEADER2>January 2017</HEADER2>
<START_DATE>01/01/2017</START_DATE>
<END_DATE>01/31/2017</END_DATE>
<BUDGETING>true</BUDGETING>
<STATUS>active</STATUS>
</REPORTINGPERIOD>
</create>
Using Postman for Testing and Debugging API Calls
Postman is a good tool for sending and confirming API requests before implementation to make the testing of your Sage Intacct API integration more efficient.
You can import the Sage Intacct Postman collection into your Postman tool, which has pre-configured endpoints for simple testing. You can use it to simply test your API calls, see results in real time, and debug any issues.
This helps in debugging by visualizing responses and simplifying the identification of errors.
Mapping your business processes to API workflows makes integration smoother.
To test your Sage Intacct API integration, using Postman is recommended. You can import the Sage Intacct Postman collection and quickly make sample API requests to verify functionality. This allows for efficient testing before you begin full implementation.
Understanding real-world applications helps in visualizing the benefits of a well-implemented integration.
This section outlines examples from various sectors that have seen success with Sage Intacct integrations.
Industry
Joining a sage intacct partnership program can offer additional resources and support for your integration efforts.
The partnership program enhances your integration by offering technical and marketing support.
Different partnership tiers cater to varied business needs.
Following best practices ensures that your integration runs smoothly over time.
Manage API calls effectively to handle growth.
Security must remain a top priority.
Effective monitoring helps catch issues early.
No integration is without its challenges. This section covers common problems and how to fix them.
Prepare for and resolve typical issues quickly.
Effective troubleshooting minimizes downtime.
Long-term management of your integration is key to ongoing success.
Stay informed about changes to avoid surprises.
Ensure your integration remains robust as your business grows.
Knit offers a streamlined approach to integrating Sage Intacct. This section details how Knit simplifies the process.
Knit reduces the heavy lifting in integration tasks by offering pre-built accounting connectors in its Unified Accounting API.
This section provides a walk-through for integrating using Knit.
A sample table for mapping objects and fields can be included:
Knit eliminates many of the hassles associated with manual integration.
In this guide, we have walked you through the steps and best practices for integrating Sage Intacct via API. You have learned how to set up a secure environment, choose the right API option, map business processes, and overcome common challenges.
If you're ready to link Sage Intacct with your systems without the need for manual integration, it's time to discover how Knit can assist. Knit delivers customized, secure connectors and a simple interface that shortens development time and keeps maintenance low. Book a demo with Knit today to see firsthand how our solution addresses your integration challenges so you can focus on growing your business rather than worrying about technical roadblocks
In today's AI-driven world, AI agents have become transformative tools, capable of executing tasks with unparalleled speed, precision, and adaptability. From automating mundane processes to providing hyper-personalized customer experiences, these agents are reshaping the way businesses function and how users engage with technology. However, their true potential lies beyond standalone functionalities—they thrive when integrated seamlessly with diverse systems, data sources, and applications.
This integration is not merely about connectivity; it’s about enabling AI agents to access, process, and act on real-time information across complex environments. Whether pulling data from enterprise CRMs, analyzing unstructured documents, or triggering workflows in third-party platforms, integration equips AI agents to become more context-aware, action-oriented, and capable of delivering measurable value.
This article explores how seamless integrations unlock the full potential of AI agents, the best practices to ensure success, and the challenges that organizations must overcome to achieve seamless and impactful integration.
The rise of Artificial Intelligence (AI) agents marks a transformative shift in how we interact with technology. AI agents are intelligent software entities capable of performing tasks autonomously, mimicking human behavior, and adapting to new scenarios without explicit human intervention. From chatbots resolving customer queries to sophisticated virtual assistants managing complex workflows, these agents are becoming integral across industries.
This rise of use of AI agents has been attributed to factors like:
AI agents are more than just software programs; they are intelligent systems capable of executing tasks autonomously by mimicking human-like reasoning, learning, and adaptability. Their functionality is built on two foundational pillars:
For optimal performance, AI agents require deep contextual understanding. This extends beyond familiarity with a product or service to include insights into customer pain points, historical interactions, and updates in knowledge. However, to equip AI agents with this contextual knowledge, it is important to provide them access to a centralized knowledge base or data lake, often scattered across multiple systems, applications, and formats. This ensures they are working with the most relevant and up-to-date information. Furthermore, they need access to all new information, such as product updates, evolving customer requirements, or changes in business processes, ensuring that their outputs remain relevant and accurate.
For instance, an AI agent assisting a sales team must have access to CRM data, historical conversations, pricing details, and product catalogs to provide actionable insights during a customer interaction.
AI agents’ value lies not only in their ability to comprehend but also to act. For instance, AI agents can perform activities such as updating CRM records after a sales call, generating invoices, or creating tasks in project management tools based on user input or triggers. Similarly, AI agents can initiate complex workflows, such as escalating support tickets, scheduling appointments, or launching marketing campaigns. However, this requires seamless connectivity across different applications to facilitate action.
For example, an AI agent managing customer support could resolve queries by pulling answers from a knowledge base and, if necessary, escalating unresolved issues to a human representative with full context.
The capabilities of AI agents are undeniably remarkable. However, their true potential can only be realized when they seamlessly access contextual knowledge and take informed actions across a wide array of applications. This is where integrations play a pivotal role, serving as the key to bridging gaps and unlocking the full power of AI agents.
The effectiveness of an AI agent is directly tied to its ability to access and utilize data stored across diverse platforms. This is where integrations shine, acting as conduits that connect the AI agent to the wealth of information scattered across different systems. These data sources fall into several broad categories, each contributing uniquely to the agent's capabilities:
Platforms like databases, Customer Relationship Management (CRM) systems (e.g., Salesforce, HubSpot), and Enterprise Resource Planning (ERP) tools house structured data—clean, organized, and easily queryable. For example, CRM integrations allow AI agents to retrieve customer contact details, sales pipelines, and interaction histories, which they can use to personalize customer interactions or automate follow-ups.
The majority of organizational knowledge exists in unstructured formats, such as PDFs, Word documents, emails, and collaborative platforms like Notion or Confluence. Cloud storage systems like Google Drive and Dropbox add another layer of complexity, storing files without predefined schemas. Integrating with these systems allows AI agents to extract key insights from meeting notes, onboarding manuals, or research reports. For instance, an AI assistant integrated with Google Drive could retrieve and summarize a company’s annual performance review stored in a PDF document.
Real-time data streams from IoT devices, analytics tools, or social media platforms offer actionable insights that are constantly updated. AI agents integrated with streaming data sources can monitor metrics, such as energy usage from IoT sensors or engagement rates from Twitter analytics, and make recommendations or trigger actions based on live updates.
APIs from third-party services like payment gateways (Stripe, PayPal), logistics platforms (DHL, FedEx), and HR systems (BambooHR, Workday) expand the agent's ability to act across verticals. For example, an AI agent integrated with a payment gateway could automatically reconcile invoices, track payments, and even issue alerts for overdue accounts.
To process this vast array of data, AI agents rely on data ingestion—the process of collecting, aggregating, and transforming raw data into a usable format. Data ingestion pipelines ensure that the agent has access to a broad and rich understanding of the information landscape, enhancing its ability to make accurate decisions.
However, this capability requires robust integrations with a wide variety of third-party applications. Whether it's CRM systems, analytics tools, or knowledge repositories, each integration provides an additional layer of context that the agent can leverage.
Without these integrations, AI agents would be confined to static or siloed information, limiting their ability to adapt to dynamic environments. For example, an AI-powered customer service bot lacking integration with an order management system might struggle to provide real-time updates on a customer’s order status, resulting in a frustrating user experience.
In many applications, the true value of AI agents lies in their ability to respond with real-time or near-real-time accuracy. Integrations with webhooks and streaming APIs enable the agent to access live data updates, ensuring that its responses remain relevant and timely.
Consider a scenario where an AI-powered invoicing assistant is tasked with generating invoices based on software usage. If the agent relies on a delayed data sync, it might fail to account for a client’s excess usage in the final moments before the invoice is generated. This oversight could result in inaccurate billing, financial discrepancies, and strained customer relationships.
Integrations are not merely a way to access data for AI agents; they are critical to enabling these agents to take meaningful actions on behalf of other applications. This capability is what transforms AI agents from passive data collectors into active participants in business processes.
Integrations play a crucial role in this process by connecting AI agents with different applications, enabling them to interact seamlessly and perform tasks on behalf of the user to trigger responses, updates, or actions in real time.
For instance, A customer service AI agent integrated with CRM platforms can automatically update customer records, initiate follow-up emails, and even generate reports based on the latest customer interactions. SImilarly, if a popular product is running low, the AI agent for e-commerce platform can automatically reorder from the supplier, update the website’s product page with new availability dates, and notify customers about upcoming restocks. Furthermore, A marketing AI agent integrated with CRM and marketing automation platforms (e.g., Mailchimp, ActiveCampaign) can automate email campaigns based on customer behaviors—such as opening specific emails, clicking on links, or making purchases.
Integrations allow AI agents to automate processes that span across different systems. For example, an AI agent integrated with a project management tool and a communication platform can automate task assignments based on project milestones, notify team members of updates, and adjust timelines based on real-time data from work management systems.
For developers driving these integrations, it’s essential to build robust APIs and use standardized protocols like OAuth for secure data access across each of the applications in use. They should also focus on real-time synchronization to ensure the AI agent acts on the most current data available. Proper error handling, logging, and monitoring mechanisms are critical to maintaining reliability and performance across integrations. Furthermore, as AI agents often interact with multiple platforms, developers should design integration solutions that can scale. This involves using scalable data storage solutions, optimizing data flow, and regularly testing integration performance under load.
Retrieval-Augmented Generation (RAG) is a transformative approach that enhances the capabilities of AI agents by addressing a fundamental limitation of generative AI models: reliance on static, pre-trained knowledge. RAG fills this gap by providing a way for AI agents to efficiently access, interpret, and utilize information from a variety of data sources. Here’s how iintegrations help in building RAG pipelines for AI agents:
Traditional APIs are optimized for structured data (like databases, CRMs, and spreadsheets). However, many of the most valuable insights for AI agents come from unstructured data—documents (PDFs), emails, chats, meeting notes, Notion, and more. Unstructured data often contains detailed, nuanced information that is not easily captured in structured formats.
RAG enables AI agents to access and leverage this wealth of unstructured data by integrating it into their decision-making processes. By integrating with these unstructured data sources, AI agents:
RAG involves not only the retrieval of relevant data from these sources but also the generation of responses based on this data. It allows AI agents to pull in information from different platforms, consolidate it, and generate responses that are contextually relevant.
For instance, an HR AI agent might need to pull data from employee records, performance reviews, and onboarding documents to answer a question about benefits. RAG enables this agent to access the necessary context and background information from multiple sources, ensuring the response is accurate and comprehensive through a single retrieval mechanism.
RAG empowers AI agents by providing real-time access to updated information from across various platforms with the help of Webhooks. This is critical for applications like customer service, where responses must be based on the latest data.
For example, if a customer asks about their recent order status, the AI agent can access real-time shipping data from a logistics platform, order history from an e-commerce system, and promotional notes from a marketing database—enabling it to provide a response with the latest information. Without RAG, the agent might only be able to provide a generic answer based on static data, leading to inaccuracies and customer frustration.
While RAG presents immense opportunities to enhance AI capabilities, its implementation comes with a set of challenges. Addressing these challenges is crucial to building efficient, scalable, and reliable AI systems.
Integration of an AI-powered customer service agent with CRM systems, ticketing platforms, and other tools can help enhance contextual knowledge and take proactive actions, delivering a superior customer experience.
For instance, when a customer reaches out with a query—such as a delayed order—the AI agent retrieves their profile from the CRM, including past interactions, order history, and loyalty status, to gain a comprehensive understanding of their background. Simultaneously, it queries the ticketing system to identify any related past or ongoing issues and checks the order management system for real-time updates on the order status. Combining this data, the AI develops a holistic view of the situation and crafts a personalized response. It may empathize with the customer’s frustration, offer an estimated delivery timeline, provide goodwill gestures like loyalty points or discounts, and prioritize the order for expedited delivery.
The AI agent also performs critical backend tasks to maintain consistency across systems. It logs the interaction details in the CRM, updating the customer’s profile with notes on the resolution and any loyalty rewards granted. The ticketing system is updated with a resolution summary, relevant tags, and any necessary escalation details. Simultaneously, the order management system reflects the updated delivery status, and insights from the resolution are fed into the knowledge base to improve responses to similar queries in the future. Furthermore, the AI captures performance metrics, such as resolution times and sentiment analysis, which are pushed into analytics tools for tracking and reporting.
In retail, AI agents can integrate with inventory management systems, customer loyalty platforms, and marketing automation tools for enhancing customer experience and operational efficiency. For instance, when a customer purchases a product online, the AI agent quickly retrieves data from the inventory management system to check stock levels. It can then update the order status in real time, ensuring that the customer is informed about the availability and expected delivery date of the product. If the product is out of stock, the AI agent can suggest alternatives that are similar in features, quality, or price, or provide an estimated restocking date to prevent customer frustration and offer a solution that meets their needs.
Similarly, if a customer frequently purchases similar items, the AI might note this and suggest additional products or promotions related to these interests in future communications. By integrating with marketing automation tools, the AI agent can personalize marketing campaigns, sending targeted emails, SMS messages, or notifications with relevant offers, discounts, or recommendations based on the customer’s previous interactions and buying behaviors. The AI agent also writes back data to customer profiles within the CRM system. It logs details such as purchase history, preferences, and behavioral insights, allowing retailers to gain a deeper understanding of their customers’ shopping patterns and preferences.
Integrating AI (Artificial Intelligence) and RAG (Recommendations, Actions, and Goals) frameworks into existing systems is crucial for leveraging their full potential, but it introduces significant technical challenges that organizations must navigate. These challenges span across data ingestion, system compatibility, and scalability, often requiring specialized technical solutions and ongoing management to ensure successful implementation.
Adding integrations to AI agents involves providing these agents with the ability to seamlessly connect with external systems, APIs, or services, allowing them to access, exchange, and act on data. Here are the top ways to achieve the same:
Custom development involves creating tailored integrations from scratch to connect the AI agent with various external systems. This method requires in-depth knowledge of APIs, data models, and custom logic. The process involves developing specific integrations to meet unique business requirements, ensuring complete control over data flows, transformations, and error handling. This approach is suitable for complex use cases where pre-built solutions may not suffice.
Embedded iPaaS (Integration Platform as a Service) solutions offer pre-built integration platforms that include no-code or low-code tools. These platforms allow organizations to quickly and easily set up integrations between the AI agent and various external systems without needing deep technical expertise. The integration process is simplified by using a graphical interface to configure workflows and data mappings, reducing development time and resource requirements.
Unified API solutions provide a single API endpoint that connects to multiple SaaS products and external systems, simplifying the integration process. This method abstracts the complexity of dealing with multiple APIs by consolidating them into a unified interface. It allows the AI agent to access a wide range of services, such as CRM systems, marketing platforms, and data analytics tools, through a seamless and standardized integration process.
Knit offers a game-changing solution for organizations looking to integrate their AI agents with a wide variety of SaaS applications quickly and efficiently. By providing a seamless, AI-driven integration process, Knit empowers businesses to unlock the full potential of their AI agents by connecting them with the necessary tools and data sources.
By integrating with Knit, organizations can power their AI agents to interact seamlessly with a wide array of applications. This capability not only enhances productivity and operational efficiency but also allows for the creation of innovative use cases that would be difficult to achieve with manual integration processes. Knit thus transforms how businesses utilize AI agents, making it easier to harness the full power of their data across multiple platforms.
Ready to see how Knit can transform your AI agents? Contact us today for a personalized demo!
In today’s fast-paced digital landscape, organizations across all industries are leveraging Calendar APIs to streamline scheduling, automate workflows, and optimize resource management. While standalone calendar applications have always been essential, Calendar Integration significantly amplifies their value—making it possible to synchronize events, reminders, and tasks across multiple platforms seamlessly. Whether you’re a SaaS provider integrating a customer’s calendar or an enterprise automating internal processes, a robust API Calendar strategy can drastically enhance efficiency and user satisfaction.
Explore more Calendar API integrations
In this comprehensive guide, we’ll discuss the benefits of Calendar API integration, best practices for developers, real-world use cases, and tips for managing common challenges like time zone discrepancies and data normalization. By the end, you’ll have a clear roadmap on how to build and maintain effective Calendar APIs for your organization or product offering in 2025.
In 2025, calendars have evolved beyond simple day-planners to become strategic tools that connect individuals, teams, and entire organizations. The real power comes from Calendar Integration, or the ability to synchronize these planning tools with other critical systems—CRM software, HRIS platforms, applicant tracking systems (ATS), eSignature solutions, and more.
Essentially, Calendar API integration becomes indispensable for any software looking to reduce operational overhead, improve user satisfaction, and scale globally.
One of the most notable advantages of Calendar Integration is automated scheduling. Instead of manually entering data into multiple calendars, an API can do it for you. For instance, an event management platform integrating with Google Calendar or Microsoft Outlook can immediately update participants’ schedules once an event is booked. This eliminates the need for separate email confirmations and reduces human error.
When a user can book or reschedule an appointment without back-and-forth emails, you’ve substantially upgraded their experience. For example, healthcare providers that leverage Calendar APIs can let patients pick available slots and sync these appointments directly to both the patient’s and the doctor’s calendars. Changes on either side trigger instant notifications, drastically simplifying patient-doctor communication.
By aligning calendars with HR systems, CRM tools, and project management platforms, businesses can ensure every resource—personnel, rooms, or equipment—is allocated efficiently. Calendar-based resource mapping can reduce double-bookings and idle times, increasing productivity while minimizing conflicts.
Notifications are integral to preventing missed meetings and last-minute confusion. Whether you run a field service company, a professional consulting firm, or a sales organization, instant schedule updates via Calendar APIs keep everyone on the same page—literally.
API Calendar solutions enable triggers and actions across diverse systems. For instance, when a sales lead in your CRM hits “hot” status, the system can automatically schedule a follow-up call, add it to the rep’s calendar, and send a reminder 15 minutes before the meeting. Such automation fosters a frictionless user experience and supports consistent follow-ups.
<a name="calendar-api-data-models-explained"></a>
To integrate calendar functionalities successfully, a solid grasp of the underlying data structures is crucial. While each calendar provider may have specific fields, the broad data model often consists of the following objects:
Properly mapping these objects during Calendar Integration ensures consistent data handling across multiple systems. Handling each element correctly—particularly with recurring events—lays the foundation for a smooth user experience.
Below are several well-known Calendar APIs that dominate the market. Each has unique features, so choose based on your users’ needs:
Applicant Tracking Systems (ATS) like Lever or Greenhouse can integrate with Google Calendar or Outlook to automate interview scheduling. Once a candidate is selected for an interview, the ATS checks availability for both the interviewer and candidate, auto-generates an event, and sends reminders. This reduces manual coordination, preventing double-bookings and ensuring a smooth interview process.
Learn more on How Interview Scheduling Companies Can Scale ATS Integrations Faster
ERPs like SAP or Oracle NetSuite handle complex scheduling needs for workforce or equipment management. By integrating with each user’s calendar, the ERP can dynamically allocate resources based on real-time availability and location, significantly reducing conflicts and idle times.
Salesforce and HubSpot CRMs can automatically book demos and follow-up calls. Once a customer selects a time slot, the CRM updates the rep’s calendar, triggers reminders, and logs the meeting details—keeping the sales cycle organized and on track.
Systems like Workday and BambooHR use Calendar APIs to automate onboarding schedules—adding orientation, training sessions, and check-ins to a new hire’s calendar. Managers can see progress in real-time, ensuring a structured, transparent onboarding experience.
Assessment tools like HackerRank or Codility integrate with Calendar APIs to plan coding tests. Once a test is scheduled, both candidates and recruiters receive real-time updates. After completion, debrief meetings are auto-booked based on availability.
DocuSign or Adobe Sign can create calendar reminders for upcoming document deadlines. If multiple signatures are required, it schedules follow-up reminders, ensuring legal or financial processes move along without hiccups.
QuickBooks or Xero integrations place invoice due dates and tax deadlines directly onto the user’s calendar, complete with reminders. Users avoid late penalties and maintain financial compliance with minimal manual effort.
While Calendar Integration can transform workflows, it’s not without its hurdles. Here are the most prevalent obstacles:
Businesses can integrate Calendar APIs either by building direct connectors for each calendar platform or opting for a Unified Calendar API provider that consolidates all integrations behind a single endpoint. Here’s how they compare:
Learn more about what should you look for in a Unified API Platform
The calendar landscape is only getting more complex as businesses and end users embrace an ever-growing range of tools and platforms. Implementing an effective Calendar API strategy—whether through direct connectors or a unified platform—can yield substantial operational efficiencies, improved user satisfaction, and a significant competitive edge. From Calendar APIs that power real-time notifications to AI-driven features predicting best meeting times, the potential for innovation is limitless.
If you’re looking to add API Calendar capabilities to your product or optimize an existing integration, now is the time to take action. Start by assessing your users’ needs, identifying top calendar providers they rely on, and determining whether a unified or direct connector strategy makes the most sense. Incorporate the best practices highlighted in this guide—like leveraging webhooks, managing data normalization, and handling rate limits—and you’ll be well on your way to delivering a next-level calendar experience.
Ready to transform your Calendar Integration journey?
Book a Demo with Knit to See How AI-Driven Unified APIs Simplify Integrations
By following the strategies in this comprehensive guide, you’ll not only harness the power of Calendar APIs but also future-proof your software or enterprise operations for the decade ahead. Whether you’re automating interviews, scheduling field services, or synchronizing resources across continents, Calendar Integration is the key to eliminating complexity and turning time management into a strategic asset.
This guide is part of our growing collection on HRIS integrations. We’re continuously exploring new apps and updating our HRIS Guides Directory with fresh insights.
Ever wondered why Gartner named Workday Leader for Cloud ERP for Service-Centric Enterprise and why top companies use it. Workday is a cloud-based enterprise management platform designed to simplify workforce management. From HR to Payroll to finance and analytics processes, all in one integrated system. Workday Integration API streamlines data exchange, enabling seamless integration between Workday and external systems.
Looking to quickstart with the Workday API Integration? Check our Workday API Directory for common Workday API endpoints
While this guide equips developers with the skills to build robust Workday integrations through clear explanations and practical examples, the benefits extend beyond the development team. You can also expand your HRIS integrations with the Workday API integration and automate tedious tasks like data entry, freeing up valuable time to focus on other important work. Business leaders gain access to real-time insights across their entire organization, empowering them to make data-driven decisions that drive growth and profitability. This guide empowers developers to build integrations that streamline HR workflows, unlock real-time data for leaders, and ultimately unlock Workday's full potential for your organization.
Understanding key terms is essential for effective integration with Workday. Let’s look upon few of them, that will be frequently used ahead -
1. API Types: Workday offers REST and SOAP APIs, which serve different purposes. REST APIs are commonly used for web-based integrations, while SOAP APIs are often utilized for complex transactions.
2. Endpoint Structure: You must familiarize yourself with the Workday API structure as each endpoint corresponds to a specific function. A common workday API example would be retrieving employee data or updating payroll information.
3. API Documentation: Workday API documentation provides a comprehensive overview of both REST and SOAP APIs.
Handling authentication and authorization in Workday depends on what Workday API protocol you are choosing to use for building your integration. If you are using Workday SOAP API, you will need the ISU user name and password for authenticating your API requests. On the other hand, if you are building your integration with Workday REST APIs you will need to use Workday's OAuth 2.0 mechanism to authorize your requests. This guide will walk you through the exact steps needed to set up an ISU and OAuth in Workday in detail.
To ensure a secure and reliable connection with Workday's APIs, this section outlines the essential prerequisites. These steps will lay the groundwork for a successful integration, enabling seamless data exchange and unlocking the full potential of Workday within your existing technological infrastructure.
Now that you have a comprehensive overview of the steps required to build a Workday API Integration and an overview of the Workday API documentation, lets dive deep into each step so you can build your Workday integration confidently!
The Web Services Endpoint for the Workday tenant serves as the gateway for integrating external systems with Workday's APIs, enabling data exchange and communication between platforms. To access your specific Workday web services endpoint, follow these steps:
Next, you need to establish an Integration System User (ISU) in Workday, dedicated to managing API requests. This ensures enhanced security and enables better tracking of integration actions. Follow the below steps to set up an ISU in Workday:
Note: The permissions listed below are necessary for the full HRIS API. These permissions may vary depending on the specific implementation
Parent Domains for HRIS
Parent Domains for HRIS
Workday offers different authentication methods. Here, we will focus on OAuth 2.0, a secure way for applications to gain access through an ISU (Integrated System User). An ISU acts like a dedicated user account for your integration, eliminating the need to share individual user credentials. Below steps highlight how to obtain OAuth 2.0 tokens in Workday:
Now as you are ready to build your Workday integration, choosing between SOAP and REST for your Workday integration can feel incredibly challenging. Let us break it down to help you decide:
The Structured Side: SOAP
Working with SOAP:
The Flexible Friend: REST
Working with REST:
Pick what you need:
Use Cases:
When you need a feature-rich environment that empowers developers for complex tasks, SOAP is the ideal choice (and the one we opted for in this guide)
Now that you have picked between SOAP and REST, let's proceed to utilize Workday HCM APIs effectively. We'll walk through creating a new employee and fetching a list of all employees – essential building blocks for your integration. Remember, if you are using SOAP, you will authenticate your requests with an ISU user name and password, while if your are using REST, you will authenticate your requests with access tokens generated by using the OAuth refresh tokens we generated in the above steps.
In this guide, we will focus on using SOAP to construct our API requests.
First let's learn about constructing a SOAP Request Body
SOAP requests follow a specific format and use XML to structure the data. Here's an example of a SOAP request body to fetch employees using the Get Workers endpoint:
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:bsvc="urn:com.workday/bsvc">
<soapenv:Header>
<wsse:Security>
<wsse:UsernameToken>
<wsse:Username>{ISU USERNAME}</wsse:Username>
<wsse:Password>{ISU PASSWORD}</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<bsvc:Get_Workers_Request xmlns:bsvc="urn:com.workday/bsvc" bsvc:version="v40.1">
</bsvc:Get_Workers_Request>
</soapenv:Body>
</soapenv:Envelope>
SOAP requests use XML to structure data. They have a main envelope containing a header and a body. The header includes authentication details, while the body specifies the function being called (e.g., Get Workers) and any parameters it needs.
Now that you know how to construct a SOAP request, let's look at a couple of real life Workday integration use cases:
Let's add a new team member. For this we will use the Hire Employee API! It lets you send employee details like name, job title, and salary to Workday. Here's a breakdown:
curl --location 'https://wd2-impl-services1.workday.com/ccx/service/{TENANT}/Staffing/v42.0' \
--header 'Content-Type: application/xml' \
--data-raw '<soapenv:Envelope xmlns:bsvc="urn:com.workday/bsvc" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header>
<wsse:Security>
<wsse:UsernameToken>
<wsse:Username>{ISU_USERNAME}</wsse:Username>
<wsse:Password>{ISU_PASSWORD}</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<bsvc:Workday_Common_Header>
<bsvc:Include_Reference_Descriptors_In_Response>true</bsvc:Include_Reference_Descriptors_In_Response>
</bsvc:Workday_Common_Header>
</soapenv:Header>
<soapenv:Body>
<bsvc:Hire_Employee_Request bsvc:version="v42.0">
<bsvc:Business_Process_Parameters>
<bsvc:Auto_Complete>true</bsvc:Auto_Complete>
<bsvc:Run_Now>true</bsvc:Run_Now>
</bsvc:Business_Process_Parameters>
<bsvc:Hire_Employee_Data>
<bsvc:Applicant_Data>
<bsvc:Personal_Data>
<bsvc:Name_Data>
<bsvc:Legal_Name_Data>
<bsvc:Name_Detail_Data>
<bsvc:Country_Reference>
<bsvc:ID bsvc:type="ISO_3166-1_Alpha-3_Code">USA</bsvc:ID>
</bsvc:Country_Reference>
<bsvc:First_Name>Employee</bsvc:First_Name>
<bsvc:Last_Name>New</bsvc:Last_Name>
</bsvc:Name_Detail_Data>
</bsvc:Legal_Name_Data>
</bsvc:Name_Data>
<bsvc:Contact_Data>
<bsvc:Email_Address_Data bsvc:Delete="false" bsvc:Do_Not_Replace_All="true">
<bsvc:Email_Address>employee@work.com</bsvc:Email_Address>
<bsvc:Usage_Data bsvc:Public="true">
<bsvc:Type_Data bsvc:Primary="true">
<bsvc:Type_Reference>
<bsvc:ID bsvc:type="Communication_Usage_Type_ID">WORK</bsvc:ID>
</bsvc:Type_Reference>
</bsvc:Type_Data>
</bsvc:Usage_Data>
</bsvc:Email_Address_Data>
</bsvc:Contact_Data>
</bsvc:Personal_Data>
</bsvc:Applicant_Data>
<bsvc:Position_Reference>
<bsvc:ID bsvc:type="Position_ID">P-SDE</bsvc:ID>
</bsvc:Position_Reference>
<bsvc:Hire_Date>2024-04-27Z</bsvc:Hire_Date>
</bsvc:Hire_Employee_Data>
</bsvc:Hire_Employee_Request>
</soapenv:Body>
</soapenv:Envelope>'
Elaboration:
Response:
<bsvc:Hire_Employee_Event_Response
xmlns:bsvc="urn:com.workday/bsvc" bsvc:version="string">
<bsvc:Employee_Reference bsvc:Descriptor="string">
<bsvc:ID bsvc:type="ID">EMP123</bsvc:ID>
</bsvc:Employee_Reference>
</bsvc:Hire_Employee_Event_Response>
If everything goes well, you'll get a success message and the ID of the newly created employee!
Now, if you want to grab a list of all your existing employees. The Get Workers API is your friend!
Below is workday API get workers example:
curl --location 'https://wd2-impl-services1.workday.com/ccx/service/{TENANT}/Human_Resources/v40.1' \
--header 'Content-Type: application/xml' \
--data '<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:bsvc="urn:com.workday/bsvc">
<soapenv:Header>
<wsse:Security>
<wsse:UsernameToken>
<wsse:Username>{ISU_USERNAME}</wsse:Username>
<wsse:Password>{ISU_USERNAME}</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<bsvc:Get_Workers_Request xmlns:bsvc="urn:com.workday/bsvc" bsvc:version="v40.1">
<bsvc:Response_Filter>
<bsvc:Count>10</bsvc:Count>
<bsvc:Page>1</bsvc:Page>
</bsvc:Response_Filter>
<bsvc:Response_Group>
<bsvc:Include_Reference>true</bsvc:Include_Reference>
<bsvc:Include_Personal_Information>true</bsvc:Include_Personal_Information>
</bsvc:Response_Group>
</bsvc:Get_Workers_Request>
</soapenv:Body>
</soapenv:Envelope>'
This is a simple GET request to the Get Workers endpoint.
Elaboration:
Response:
<?xml version='1.0' encoding='UTF-8'?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Body>
<wd:Get_Workers_Response xmlns:wd="urn:com.workday/bsvc" wd:version="v40.1">
<wd:Response_Filter>
<wd:Page>1</wd:Page>
<wd:Count>1</wd:Count>
</wd:Response_Filter>
<wd:Response_Data>
<wd:Worker>
<wd:Worker_Data>
<wd:Worker_ID>21001</wd:Worker_ID>
<wd:User_ID>lmcneil</wd:User_ID>
<wd:Personal_Data>
<wd:Name_Data>
<wd:Legal_Name_Data>
<wd:Name_Detail_Data wd:Formatted_Name="Logan McNeil" wd:Reporting_Name="McNeil, Logan">
<wd:Country_Reference>
<wd:ID wd:type="WID">bc33aa3152ec42d4995f4791a106ed09</wd:ID>
<wd:ID wd:type="ISO_3166-1_Alpha-2_Code">US</wd:ID>
<wd:ID wd:type="ISO_3166-1_Alpha-3_Code">USA</wd:ID>
<wd:ID wd:type="ISO_3166-1_Numeric-3_Code">840</wd:ID>
</wd:Country_Reference>
<wd:First_Name>Logan</wd:First_Name>
<wd:Last_Name>McNeil</wd:Last_Name>
</wd:Name_Detail_Data>
</wd:Legal_Name_Data>
</wd:Name_Data>
<wd:Contact_Data>
<wd:Address_Data wd:Effective_Date="2008-03-25" wd:Address_Format_Type="Basic" wd:Formatted_Address="42 Laurel Street&#xa;San Francisco, CA 94118&#xa;United States of America" wd:Defaulted_Business_Site_Address="0">
</wd:Address_Data>
<wd:Phone_Data wd:Area_Code="415" wd:Phone_Number_Without_Area_Code="441-7842" wd:E164_Formatted_Phone="+14154417842" wd:Workday_Traditional_Formatted_Phone="+1 (415) 441-7842" wd:National_Formatted_Phone="(415) 441-7842" wd:International_Formatted_Phone="+1 415-441-7842" wd:Tenant_Formatted_Phone="+1 (415) 441-7842">
</wd:Phone_Data>
</wd:Worker_Data>
</wd:Worker>
</wd:Response_Data>
</wd:Get_Workers_Response>
</env:Body>
</env:Envelope>
This JSON array gives you details of all your employees including details like the name, email, phone number and more.
Use a tool like Postman or curl to POST this XML to your Workday endpoint.
If using REST, you’ll pass JSON payloads, include an OAuth 2.0 Bearer token, etc. The overall structure is simpler but the specifics vary.
To avoid risking any glitches in production, isn’t it amazing to first test our code on test data? A sandbox is your safe zone to test your code before takeoff. As we already had a summarized view of the importance of using sandbox in our preliminary steps, let’s move to detailed steps to execute these steps.
That’s it! You are now ready to move your integration to production. Change the urls and ISU to the production values and you are good to go. Be sure to implement logging and monitoring mechanisms to make sure you can effectively catch and debug issues if the need arises. Tools like Knit provide integration observability dashboards which can be used to monitor live integrations.
PECI (Payroll Effective Change Interface) lets you transmit employee data changes (like new hires, raises, or terminations) directly to your payroll provider, slashing manual work and errors. Below you will find a brief comparison of PECI and Web Services and also the steps required to setup PECI in Workday
Feature: PECI
Feature: Web Services
PECI set up steps :-
Getting stuck with errors can be frustrating and time-consuming. Although many times we face errors that someone else has already faced, and to avoid giving in hours to handle such errors, we have put some common errors below and solutions to how you can handle them.
We know you're here to conquer Workday integrations, and at Knit (rated #1 for ease of use as of 2025!), we're here to help! Knit offers a unified API platform which lets you connect your application to multiple HRIS, CRM, Accounting, Payroll, ATS, ERP, and more tools in one go.
Advantages of Knit for Workday Integrations
Getting Started with Knit
REST Unified API Approach with Knit
In a world where seamless employee onboarding, offboarding, and everything in between is essential, HRIS (Human Resources Information System) integration has become non-negotiable. Whether you need to automate hr workflows or enable customer-facing connections, robust HRIS integrations save time, reduce errors, and provide a better experience for everyone involved.
In this guide, we’ll show you what HRIS integration is, how it works, real-world use cases, the challenges you might face, and best practices to address them—all to help you master HRIS integration in your organization or product.
If you're just looking to quick start with a specific HRIS APP integration, you can find APP specific guides and resources in our HRIS API Guides Directory
HRIS integration is the process of connecting an HR system (sometimes also called HCM or Human Capital Management) with other applications—such as payroll, ATS, or onboarding tools—through APIs or other connectivity methods. These connections can be:
For an in-depth discussion on broader integration strategies, check out our in-depth guide SaaS Integration: Everything You Need to Know (Strategies, Platforms, and Best Practices)
Below are just a few reasons companies invest heavily in HRIS integrations:
Different HRIS tools vary in the data they store, but core objects usually include:
Understanding data models is essential for data normalization—ensuring your integration processes data consistently across multiple HRIS platforms.
If you’re building 1:1 connectors internally, each HRIS API can take weeks and ~$10k to implement. Start with the integrations your team or customers request most frequently.
Key aspects include:
HRIS vendors update their APIs frequently. Establish a process to track changes and switch to newer versions before older ones are deprecated.
Create a knowledge base for each HRIS integration—auth methods, endpoints, typical data flows, potential errors. Testing in a sandbox (if available) is crucial. Also consider Everything you need to know about auto-provisioning for advanced user onboarding/offboarding scenarios.
A unified API (like Knit’s) can drastically reduce dev time. Instead of building one connector per HRIS, a single integration can unlock dozens of platforms.
When a candidate is hired in Greenhouse or Lever, relevant data (name, email, role) automatically syncs into the HRIS—no manual re-entry.
Related: ATS Integration Guide
Ensures compensation details, time off, and new hires flow seamlessly. Tools like Gusto, ADP, Paylocity rely on HRIS data to run correct payroll.
Onboarding platforms (like Sapling) read data from the HRIS for user provisioning—email account setups, benefits enrollment, etc. Offboarding triggers automatically remove user access.
LMS tools (e.g., TalentLMS) read the employee’s department or skill set from the HRIS, then push training completion data back for performance records.
Apps like QuickBooks Time or When I Work update shift data automatically. The HRIS sees hours worked, schedules, or attendance logs in near-real time.
Since HR data is particularly sensitive, you must implement robust security measures to prevent unauthorized access.
Here’s a simplified roadmap for HRIS integration:
Q1: How does HRIS integration differ from payroll integration?
They overlap significantly, but payroll integration focuses primarily on pay data, taxes, and deductions. HRIS integration is broader—covering employee lifecycle, organizational structure, and more. (For a deep dive, check out our Guide to Payroll API Integration.)
Q2: Which HRIS solutions should I integrate with first?
Start with the ones your customers or internal teams use most, such as Workday, BambooHR, ADP, or Gusto. Focus on high-demand solutions that yield immediate ROI.
Q3: How do I handle versioning changes from HRIS vendors?
Monitor their documentation or developer portals. If they drop support for old endpoints, ensure your code updates quickly to avoid broken integrations.
Q4: Are unified APIs secure?
Yes. Platforms like Knit follow industry best practices (SOC2, GDPR, ISO27001) and never store a copy of your data. Always confirm the provider’s security compliance.
Q5: Can I integrate if an HRIS doesn’t offer a public API?
Some vendors have paywalled or partner-only APIs. You’ll need to set up a formal agreement or explore alternative integration approaches (like SFTP file syncs or iPaaS with custom connectors).
Knit provides a unified HRIS API that streamlines the integration of HRIS solutions. Instead of connecting directly with multiple HRIS APIs, Knit allows you to connect with top providers like Workday, Successfactors, BambooHr, and many others through a single integration.
Learn more about the benefits of using a unified API.
Getting started with Knit is simple. In just 5 steps, you can embed multiple HRIS integrations into your APP.
Steps Overview:
For detailed integration steps with the unified HRIS API, visit: Getting started with Knit
HRIS integration automates employee data across diverse tools—ATS, payroll, onboarding, scheduling, and more. It cuts manual tasks, lowers errors, and boosts productivity and customer satisfaction.
Resources to get you started on your integrations journey
Learn how to build your specific integrations use case with Knit
In today's fast-evolving business landscape, companies are streamlining employee financial offerings, particularly in payroll-linked payments and leasing solutions. These include auto-leasing programs, payroll-based financing, and other benefits designed to enhance employee financial well-being.
By integrating directly with an organization’s Human Resources Information System (HRIS) and payroll systems, solution providers can offer a seamless experience that benefits both employers (B2B) and employees (B2C). This guide explores the importance of payroll integration, challenges businesses face, and best practices for implementing scalable solutions, with insights drawn from the B2B auto-leasing sector.
Payroll-linked leasing and financing offer key advantages for companies and employees:
Despite its advantages, integrating payroll-based solutions presents several challenges:
Integrating payroll systems into leasing platforms enables:
A structured payroll integration process typically follows these steps:
To ensure a smooth and efficient integration, follow these best practices:
A robust payroll integration system must address:
A high-level architecture for payroll integration includes:
┌────────────────┐ ┌─────────────────┐
│ HR System │ │ Payroll │
│(Cloud/On-Prem) │ → │(Deduction Logic)│
└───────────────┘ └─────────────────┘
│ (API/Connector)
▼
┌──────────────────────────────────────────┐
│ Unified API Layer │
│ (Manages employee data & payroll flow) │
└──────────────────────────────────────────┘
│ (Secure API Integration)
▼
┌───────────────────────────────────────────┐
│ Leasing/Finance Application Layer │
│ (Approvals, User Portal, Compliance) │
└───────────────────────────────────────────┘
A single API integration that connects various HR systems enables scalability and flexibility. Solutions like Knit offer pre-built integrations with 40+ HRMS and payroll systems, reducing complexity and development costs.
To implement payroll-integrated leasing successfully, follow these steps:
Payroll-integrated leasing solutions provide significant advantages for employers and employees but require well-planned, secure integrations. By leveraging a unified API layer, automating approval workflows, and payroll deductions data, businesses can streamline operations while enhancing employee financial wellness.
For companies looking to reduce overhead and accelerate implementation, adopting a pre-built API solution can simplify payroll integration while allowing them to focus on their core leasing offerings. Now is the time to map out your integration strategy, define your data requirements, and build a scalable solution that transforms the employee leasing experience.
Ready to implement a seamless payroll-integrated leasing solution? Take the next step today by exploring unified API platforms and optimizing your HR-tech stack for maximum efficiency. To talk to our solutions experts at Knit you can reach out to us here
Seamless CRM and ticketing system integrations are critical for modern customer support software. However, developing and maintaining these integrations in-house is time-consuming and resource-intensive.
In this article, we explore how Knit’s Unified API simplifies customer support integrations, enabling teams to connect with multiple platforms—HubSpot, Zendesk, Intercom, Freshdesk, and more—through a single API.
Customer support platforms depend on real-time data exchange with CRMs and ticketing systems. Without seamless integrations:
A unified API solution eliminates these issues, accelerating integration processes and reducing ongoing maintenance burdens.
Developing custom integrations comes with key challenges:
For example a company offering video-assisted customer support where users can record and send videos along with support tickets. Their integration requirements include:
With Knit’s Unified API, these steps become significantly simpler.
By leveraging Knit’s single API interface, companies can automate workflows and reduce development time. Here’s how:
Knit provides pre-built ticketing APIs to simplify integration with customer support systems:
For a successful integration, follow these best practices:
Streamline your customer support integrations with Knit and focus on delivering a world-class support experience!
📞 Need expert advice? Book a consultation with our team. Find time here
If you want to unlock 40+ HRIS and ATS integrations with a single API key, check out Knit API
With the rise of data-driven recruitment, it is imperative for each recruitment tool, including candidate sourcing and screening tools, to integrate with Applicant Tracking Systems (ATS) for enabling centralized data management for end users.
However, there are hundreds of ATS applications available in the market today. To integrate with each one of these applications with different ATS APIs is next to impossible.
That is why more and more recruitment tools are looking for a better (and faster) way to scale their ATS integrations. Unified ATS APIs are one such cost-effective solution that can cut down your integration building and maintenance time by 80%.
Before moving on to how companies can leverage unified ATS API to streamline candidate sourcing and screening, let’s look at the workflow and how ATS API helps.
Here’s a quick snapshot of the candidate sourcing and screening workflow:
Posting job requirements/ details about open positions to create widespread outreach about the roles you are hiring for.
Collecting and fetching candidate profiles/ resumes from different platforms—job sites, social media, referrals—to create a pool of potential candidates for the open positions.
Taking out all relevant data—skills, relevant experience, expected salary, etc. —from a candidate’s resume and updating it based on the company’s requirement in a specific format.
Eliminating profiles which are not relevant for the role by mapping profiles to the job requirements.
Conducting a preliminary check to ensure there are no immediate red flags.
Setting up and administering assessments, setting up interviews to ensure role suitability and collating evaluation for final decision making.
Sharing feedback and evaluation, communicating decisions to the candidates and continuing the process in case the position doesn’t close.
Here are some of the top use cases of how ATS API can help streamline candidate sourcing and screening.
All candidate details from all job boards and portals can be automatically collected and stored at one centralized place for communication and processing and future leverage.
ATS APIs ensure real time, automated candidate profile import, reducing manual data entry errors and risk of duplication.
ATS APIs can help automate screening workflows by automating resume parsing and screening as well as ensuring that once a step like background checks is complete, assessments and then interview set up are triggered automatically.
ATS APIs facilitate real time data sync and event-based triggers between different applications to ensure that all candidate information available with the company is always up to date and all application updates are captured ASAP.
ATS APIs help analyze and draw insights from ATS engagement data — like application rate, response to job postings, interview scheduling — to finetune future screening.
ATS API can further integrate with other assessment, interview scheduling and onboarding applications enabling faster movement of candidates across different recruitment stages.
ATS API integrations can help companies with automated, personalized and targeted outreach and candidate communication to improve candidate engagement, improve hiring efficiency and facilitate better employer branding.
Undoubtedly, using ATS API integration can effectively streamline the candidate sourcing and screening process by automating several parts of the way. However, there are several roadblocks to integrating ATS APIs at scale because of which companies refrain from leveraging the benefits that come along. Try our ROI calculator to see how much building integrations in-house can he.
In the next section we will discuss how to solve the common challenges for SaaS products trying to scale and accelerate their ATS integration strategy.
Let's discuss how the roadblocks can be removed with unified ATS API: just one API for all ATS integrations. Learn more about unified APIs here
When data is being exchanged between different ATS applications and your system, it needs to be normalized and transformed. Since the same details from different applications can have different fields and nuances, chances are if not normalized well, you will end up losing critical data which may not be mapped to specific fields between systems.
This will hamper centralized data storage, initiate duplication and require manual mapping not to mention screening workflow disruption. At the same time, normalizing each data field from each different API requires developers to understand the nuances of each API. This is a time and resource intensive process and can take months of developer time.
Unified APIs like Knit help companies normalize different ATS data by mapping different data schemas from different applications into a single, unified data model for all ATS APIs. Data normalization takes place in real time and is almost 10X faster, enabling companies to save tech bandwidth and skip the complex processes that might lead to data loss due to poor mapping.
Bonus: Knit also offers an custom data fields for data that is not included in the unified model, but you may need for your specific use case. It also allows you to to request data directly from the source app via its Passthrough Request feature. Learn more
Second, some ATS API integration has a polling infrastructure which requires recruiters to manually request candidate data from time to time. This lack of automated data updation in real time can lead to delayed sourcing and screening of applicants, delaying the entire recruitment process. This can negatively impact the efficiency that is expected from ATS integration.
Furthermore, Most ATS platforms receive 1000s of applications in a matter of a few minutes. The data load for transfer can be exceptionally high at times, especially when a new role is posted or there is any update.
As your number of integrated platforms increases, managing such bulk data transfers efficiently as well as eliminating delays becomes a huge challenge for engineering teams with limited bandwidth
Knit as a unified ATS API ensures that you don’t lose out on even one candidate application or be delayed in receiving them. To achieve this, Knit works on a webhooks based system with event-based triggers. As soon as an event happens, data syncs automatically via webhooks.
Read: How webhooks work and how to register one?
Knit manages all the heavy lifting of polling data from ATS apps, dealing with different API calls, rate limits, formats etc. It automatically retrieves new applications from all connected ATS platforms, eliminating the need to make API calls or manual data syncs for candidate sourcing and screening.
At the same time, Knit comes with retry and resiliency guarantees to ensure that no application is missed irrespective of the data load. Thus, handling data at scale.
This ensures that recruiters get access to all candidate data in real time to fill positions faster with automated alerts as and when new applications are retrieved for screening.
Since the ATS and other connected platforms have access to sensitive data, protecting candidate data from attacks, ensuring constant monitoring and right permission/ access is crucial yet challenging to put in practice.
Knit unified ATS API enables companies to effectively secure the sensitive candidate data they have access to in multiple ways.
Finally, ATS API integration can be a long drawn process. It can take 2 weeks to 3 months and thousands of dollars to build integration with just a single ATS provider.
With different end points, data models, nuances, documentation etc. ATS API integration can be a long deployment project, diverting away engineering resources from core functions.
It’s not uncommon for companies to lose valuable deals due to this delay in setting up customer requested ATS integrations.
Furthermore, the maintenance, documentation, monitoring as well as error handling further drains engineering bandwidth and resources. This can be a major deterrent for smaller companies that need to scale their integration stack to remain competitive.
A unified ATS API like Knit allows you to connect with 30+ ATS platforms in one go helping you expand your integration stack overnight.
All you have to do is embed Knit’s UI component into your frontend once. All heavy lifting of auth, endpoints, credential management, verification, token generations, etc. is then taken care of by Knit.
Fortunately, companies can easily address the challenges mentioned above and streamline their candidate sourcing and screening process with a unified ATS API. Here are some of the top benefits you get with a unified ATS API:
Once you have scaled your integrations, it can be difficult to monitor the health of each integration and stay on top of user data and security threats. Unified API like Knit provides a detailed Logs and Issues dashboard i.e. a one page overview of all your integrations, webhooks and API calls. With smart filtering options for Logs and Issues, Knit helps you get a quick glimpse of the API's status, extract historical data and take necessary action as needed.
Along with Read APIs, Knit also provides a range of Write APIs for ATS integrations so that you can not only fetch data from the apps, you can also update the changes — updating candidate’s stage, rejecting an application etc. — directly into the ATS application's system. See docs
For an average SaaS company, each new integration takes about 6 weeks to 3 months to build and deploy. For maintenance, it takes minimum of 10 developer hours per week. Thus, building each new integration in-house can cost a SaaS business ~USD 15,000. Imagine doing that for 30+ integrations or 200!
On the other hand, by building and maintaining integrations for you, Knit can bring down your annual cost of integrations by as much as 20X. Calculate ROI yourself
In short, an API aggregator is non negotiable if you want to scale your ATS integration stack without compromising valuable in-house engineering bandwidth.
Fetch job IDs from your users Applicant Tracking Systems (ATS) using Knit’s job data models along with other necessary job information such as departments, offices, hiring managers etc.
Use the job ID to fetch all and individual applicant details associated with the job posting. This would give you information about the candidate such as contact details, experience, links, location, experience, current stage etc. These data fields will help you screen the candidates in one easy step.
Next is where you take care of screening activities on your end after getting required candidate and job details. Based on your use case, you parse CVs, conduct background checks and/or administer assessment procedures.
Once you have your results, you can progmmatically push data back directly within the ATS system of your users using Knit’s write APIs to ensure a centralized, seamless user experience. For example, based on screening results, you can —
Thus, Knit ensures that your entire screening process is smooth and requires minimum intervention.
If you are looking to quickly connect with 30+ ATS applications — including Greenhouse, Lever, Jobvite and more — get your Knit API keys today.
You may talk to our one of our experts to help you build a customized solution for your ATS API use case.
The best part? You can also make a specific ATS integration request. We would be happy to prioritize your request.
Developer resources on APIs and integrations
Welcome to our comprehensive guide on troubleshooting common Salesforce integration challenges. Whether you're facing authentication issues, configuration errors, or data synchronization problems, this FAQ provides step-by-step instructions to help you debug and fix these issues.
Building a Salesforce Integration? Learn all about the Salesforce API in our in-depth Salesforce Integration Guide
Resolution: Refresh your token if needed, update your API endpoint to the proper instance, and adjust session or Connected App settings as required.
Resolution: Correct any mismatches in credentials or settings and restart the OAuth process to obtain fresh tokens.
Resolution: Integrate an automatic token refresh process to ensure seamless generation of a new access token when needed.
Resolution: Reconfigure your Connected App as needed and test until you receive valid tokens.
Resolution: Adjust your production settings to mirror your sandbox configuration and update any environment-specific parameters.
Resolution: Follow Salesforce’s guidelines, test in a sandbox, and ensure all endpoints and metadata are exchanged correctly.
Resolution: Correct the field names and update permissions so the integration user can access the required data.
Resolution: Adjust your integration to enforce proper ID formatting and validate IDs before using them in API calls.
Resolution: Update user permissions and sharing settings to ensure all referenced data is accessible.
Resolution: Choose REST for lightweight web/mobile applications and SOAP for enterprise-level integrations that require robust transaction support.
Resolution: Integrate the Bulk API using available libraries or custom HTTP requests, ensuring continuous monitoring of job statuses.
Resolution: Ensure the JWT is correctly formatted and securely signed, then follow Salesforce documentation to obtain your access token.
Resolution: Develop your mobile integration with Salesforce’s mobile tools, ensuring robust authentication and data synchronization.
Resolution: Refactor your integration to minimize API calls and use smart retry logic to handle rate limits gracefully.
Resolution: Develop a layered logging system that captures detailed data while protecting sensitive information.
Resolution: Establish a robust logging framework for real-time monitoring and proactive error resolution.
Resolution: Adopt middleware that matches your requirements for secure, accurate, and efficient data exchange.
Resolution: Enhance your data sync strategy with incremental updates and conflict resolution to ensure data consistency.
Resolution: Use secure storage combined with robust access controls to protect your OAuth tokens.
Resolution: Strengthen your security by combining narrow OAuth scopes, IP restrictions, and dedicated integration user accounts.
Resolution: Follow Salesforce best practices to secure credentials, manage tokens properly, and design your integration for scalability and reliability.
If you're finding it challenging to build and maintain these integrations on your own, Knit offers a seamless, managed solution. With Knit, you don’t have to worry about complex configurations, token management, or API limits. Our platform simplifies Salesforce integrations, so you can focus on growing your business.
Stop spending hours troubleshooting and maintaining complex integrations. Discover how Knit can help you seamlessly connect Salesforce with your favorite systems—without the hassle. Explore Knit Today »
In the world of APIs, it's not enough to implement security measures and then sit back, hoping everything stays safe. The digital landscape is dynamic, and threats are ever-evolving.
Real-time monitoring provides an extra layer of protection by actively watching API traffic for any anomalies or suspicious patterns.
For instance -
In both cases, real-time monitoring can trigger alerts or automated responses, helping you take immediate action to safeguard your API and data.
Now, on similar lines, imagine having a detailed diary of every interaction and event within your home, from visitors to when and how they entered. Logging mechanisms in API security serve a similar purpose - they provide a detailed record of API activities, serving as a digital trail of events.
Logging is not just about compliance; it's about visibility and accountability. By implementing logging, you create a historical archive of who accessed your API, what they did, and when they did it. This not only helps you trace back and investigate incidents but also aids in understanding usage patterns and identifying potential vulnerabilities.
To ensure robust API security, your logging mechanisms should capture a wide range of information, including request and response data, user identities, IP addresses, timestamps, and error messages. This data can be invaluable for forensic analysis and incident response.
Combining logging with real-time monitoring amplifies your security posture. When unusual or suspicious activities are detected in real-time, the corresponding log entries provide context and a historical perspective, making it easier to determine the extent and impact of a security breach.
Based on factors like performance monitoring, security, scalability, ease of use, and budget constraints, you can choose a suitable API monitoring and logging tool for your application.
This is exactly what Knit does. Along with allowing you access to data from 50+ APIs with a single unified API, it also completely takes care of API logging and monitoring.
It offers a detailed Logs and Issues page that gives you a one page historical overview of all your webhooks and integrated accounts. It includes a number of API calls and provides necessary filters to choose your criterion. This helps you to always stay on top of user data and effectively manage your APIs.
Ready to build?
Get your API keys to try these API monitoring best practices for real
If you are looking to unlock 40+ HRIS and ATS integrations with a single API key, check out Knit API. If not, keep reading
Note: This is our master guide on API Pagination where we solve common developer queries in detail with common examples and code snippets. Feel free to visit the smaller guides linked later in this article on topics such as page size, error handling, pagination stability, caching strategies and more.
In the modern application development and data integration world, APIs (Application Programming Interfaces) serve as the backbone for connecting various systems and enabling seamless data exchange.
However, when working with APIs that return large datasets, efficient data retrieval becomes crucial for optimal performance and a smooth user experience. This is where API pagination comes into play.
In this article, we will discuss the best practices for implementing API pagination, ensuring that developers can handle large datasets effectively and deliver data in a manageable and efficient manner. (We have linked bite sized how-to guides on all API pagination FAQs you can think of in this article. Keep reading!)
But before we jump into the best practices, let’s go over what is API pagination and the standard pagination techniques used in the present day.
API pagination refers to a technique used in API design and development to retrieve large data sets in a structured and manageable manner. When an API endpoint returns a large amount of data, pagination allows the data to be divided into smaller, more manageable chunks or pages.
Each page contains a limited number of records or entries. The API consumer or client can then request subsequent pages to retrieve additional data until the entire dataset has been retrieved.
Pagination typically involves the use of parameters, such as offset and limit or cursor-based tokens, to control the size and position of the data subset to be retrieved.
These parameters determine the starting point and the number of records to include on each page.
By implementing API pagination, developers as well as consumers can have the following advantages -
Retrieving and processing smaller chunks of data reduces the response time and improves the overall efficiency of API calls. It minimizes the load on servers, network bandwidth, and client-side applications.
Since pagination retrieves data in smaller subsets, it reduces the amount of memory, processing power, and bandwidth required on both the server and the client side. This efficient resource utilization can lead to cost savings and improved scalability.
Paginated APIs provide a better user experience by delivering data in manageable portions. Users can navigate through the data incrementally, accessing specific pages or requesting more data as needed. This approach enables smoother interactions, faster rendering of results, and easier navigation through large datasets.
With pagination, only the necessary data is transferred over the network, reducing the amount of data transferred and improving network efficiency.
Pagination allows APIs to handle large datasets without overwhelming system resources. It provides a scalable solution for working with ever-growing data volumes and enables efficient data retrieval across different use cases and devices.
With pagination, error handling becomes more manageable. If an error occurs during data retrieval, only the affected page needs to be reloaded or processed, rather than reloading the entire dataset. This helps isolate and address errors more effectively, ensuring smoother error recovery and system stability.
Some of the most common, practical examples of API pagination are:
There are several common API pagination techniques that developers employ to implement efficient data retrieval. Here are a few useful ones you must know:
Read: Common API Pagination Techniques to learn more about each technique
When implementing API pagination in Python, there are several best practices to follow. For example,
Adopt a consistent naming convention for pagination parameters, such as "offset" and "limit" or "page" and "size." This makes it easier for API consumers to understand and use your pagination system.
Provide metadata in the API responses to convey additional information about the pagination.
This can include the total number of records, the current page, the number of pages, and links to the next and previous pages. This metadata helps API consumers navigate through the paginated data more effectively.
For example, here’s how the response of a paginated API should look like -
Select an optimal page size that balances the amount of data returned per page.
A smaller page size reduces the response payload and improves performance, while a larger page size reduces the number of requests required.
Determining an appropriate page size for a paginated API involves considering various factors, such as the nature of the data, performance considerations, and user experience.
Here are some guidelines to help you determine the optimal page size.
Read: How to determine the appropriate page size for a paginated API
Provide sorting and filtering parameters to allow API consumers to specify the order and subset of data they require. This enhances flexibility and enables users to retrieve targeted results efficiently. Here's an example of how you can implement sorting and filtering options in a paginated API using Python:
Ensure that the pagination remains stable and consistent between requests. Newly added or deleted records should not affect the order or positioning of existing records during pagination. This ensures that users can navigate through the data without encountering unexpected changes.
Read: 5 ways to preserve API pagination stability
Account for edge cases such as reaching the end of the dataset, handling invalid or out-of-range page requests, and gracefully handling errors.
Provide informative error messages and proper HTTP status codes to guide API consumers in handling pagination-related issues.
Read: 7 ways to handle common errors and invalid requests in API pagination
Implement caching mechanisms to store paginated data or metadata that does not frequently change.
Caching can help improve performance by reducing the load on the server and reducing the response time for subsequent requests.
Here are some caching strategies you can consider:
Cache the entire paginated response for each page. This means caching the data along with the pagination metadata. This strategy is suitable when the data is relatively static and doesn't change frequently.
Cache the result set of a specific query or combination of query parameters. This is useful when the same query parameters are frequently used, and the result set remains relatively stable for a certain period. You can cache the result set and serve it directly for subsequent requests with the same parameters.
Set an expiration time for the cache based on the expected freshness of the data. For example, cache the paginated response for a certain duration, such as 5 minutes or 1 hour. Subsequent requests within the cache duration can be served directly from the cache without hitting the server.
Use conditional caching mechanisms like HTTP ETag or Last-Modified headers. The server can respond with a 304 Not Modified status if the client's cached version is still valid. This reduces bandwidth consumption and improves response time when the data has not changed.
Implement a reverse proxy server like Nginx or Varnish in front of your API server to handle caching.
Reverse proxies can cache the API responses and serve them directly without forwarding the request to the backend API server.
This offloads the caching responsibility from the application server and improves performance.
In conclusion, implementing effective API pagination is essential for providing efficient and user-friendly access to large datasets. But it isn’t easy, especially when you are dealing with a large number of API integrations.
Using a unified API solution like Knit ensures that your API pagination requirements is handled without you requiring to do anything anything other than embedding Knit’s UI component on your end.
Once you have integrated with Knit for a specific software category such as HRIS, ATS or CRM, it automatically connects you with all the APIs within that category and ensures that you are ready to sync data with your desired app.
In this process, Knit also fully takes care of API authorization, authentication, pagination, rate limiting and day-to-day maintenance of the integrations so that you can focus on what’s truly important to you i.e. building your core product.
By incorporating these best practices into the design and implementation of paginated APIs, Knit creates highly performant, scalable, and user-friendly interfaces for accessing large datasets. This further helps you to empower your end users to efficiently navigate and retrieve the data they need, ultimately enhancing the overall API experience.
Sign up for free trial today or talk to our sales team
Deep dives into the Knit product and APIs
Whether you’re a SaaS founder, product manager, or part of the customer success team, one thing is non-negotiable — customer data privacy. If your users don’t trust how you handle data, especially when integrating with third-party tools, it can derail deals and erode trust.
Unified APIs have changed the game by letting you launch integrations faster. But under the hood, not all unified APIs work the same way — and Kombo.dev and Knit.dev take very different approaches, especially when it comes to data sync, compliance, and scalability.
Let’s break it down.
Unified APIs let you integrate once and connect with many applications (like HR tools, CRMs, or payroll systems). They normalize different APIs into one schema so you don’t have to build from scratch for every tool.
A typical unified API has 4 core components:
This makes Knit ideal if you care about branding and custom UX.
Tom summarize, Knit API is the only unified API that does not store customer data at our end, and offers a scalable, secure, event-driven push data sync architecture for smaller as well as larger data loads.By now, if you are convinced that Knit API is worth giving a try, please click here to get your API keys. Or if you want to learn more, see our docs
As the nature of employment is constantly changing with dynamic employee benefit expectations, organizational payroll is seeing constant transformation. At the same time, payroll data is no longer used only for paying employees, but is increasingly being employed for a variety of other purposes.
This diversification and added complexities of payroll has given rise to payroll APIs which are integral in bringing together the employment ecosystem for businesses to facilitate smooth transactions.
If you're just looking to quick start with a specific Payroll APP integration, you can find APP specific guides and resources in our Payrolll API Guides Directory
Like all other APIs or application programming interfaces, payroll APIs help companies integrate their different applications or platforms that they use to manage employee payment details together for a robust payroll system.
Essentially, it enables organizations to bring together details related to salary, benefits, payment schedule etc. and run this data seamlessly to ensure that all employees are compensated correctly and on time, facilitating greater satisfaction and motivation, while preventing any financial challenges for the company.
To build or use any payroll API or HRIS integration, it is important that you understand the key payroll concepts and the information you will need to collect for effective execution. Since payroll APIs are domain specific, lack of knowledge of these concepts will make the process of integration complicated and slow. Thus, here is a quick list of concepts to get started.
The first concept you should start with focuses on understanding the frequency and repetition of payments. There are multiple layers to understand here.
First, understand the frequency. In technical terms, it is called pay period. This refers to the number of times a payment is made within a specific period. For instance, it could be monthly, twice in a month, four times a month, etc. Essentially, it is how many times a payment is made within a particular period.
Second, is the repetition, also known as payroll runs. Within an organization, some employees are paid on a regular basis, while others might receive a one-time payment for specific projects. A payroll run defines whether or not the payment is recurring. Your payroll run will also constitute a status to help understand whether or not the payment has been made. In case the payment is being calculated, the status will likely be unprocessed. However, once it is complete, the status will change to paid or whatever nomenclature you use.
As a part of the payroll concepts, it is extremely important for you to understand terms like pay scale, in-hand pay, compensation, pay rate, deduction, reimbursements, etc. We’ll take them one at a time.
A pay scale or pay rate determines the amount of salary that is due to an employee based on their level of experience, job role, title, tenure with the organization, etc.
A pay scale or a pay rate can be in the form of an hourly or weekly or even a monthly figure, say INR xx per week or INR yy per hour. It may differ for people with similar experience at the same level, based on their tenure with the company, skills and competencies, etc.
Based on the pay scale or pay rate, a company can calculate the compensation due to any employee. Generally, the math for compensation isn’t linear. Compensation is also referred to as the gross pay which includes the pay rate multiplied by the time period that the employee has worked for along with other benefits like bonuses and commissions that might be due to the employee, based on their terms of employment.
For instance, some organizations provide a one-time joining bonus, while others have sales incentives for their employees. All of these form a part of the compensation or gross pay.
In addition to the benefits mentioned above, an employee might be eligible for others including a health cover, leave-travel allowance, mental wellness allowance etc. These all together add up to benefits that an employee receives over and above the pay rate.
Within the compensation or the gross pay are parts of deductions, which are not directly paid to the employees. These deductions differ across countries and regions and even based on the size of the company.
For instance, in India, companies have to deduct PF from the employee’s gross pay which is given to them at the time of retirement. However, if an organization is smaller than 20 people, this compliance doesn’t come into existence. At the same time, based on the pay scale and pay rate, there are tax deductions which are due.
The in-hand pay is essentially the amount an employee receives after addition of all due payment and subtraction of the aforementioned deductions. This is the payment that the employee receives in his/ her bank account.
Another concept within the payroll is reimbursements. There might be some expenses that an employee undertakes based on the requirements of the job, which are not a part of the gross pay. For instance, an employee takes out a client for dinner or is traveling for company work. In such cases, the expenses borne by the employee are compensated to the employee. Reimbursements are generally direct and don’t incur any tax deductions.
The above concepts together add up to the cost to the employer. This refers to how much an employee essentially costs to a company, including all the direct and indirect payments made to them. The calculation starts with the pay scale or pay rate to which other aspects like contribution to benefits and em
Now that you have an understanding of the major payroll concepts, you also need to be aware about the key data or information that you will need to comprehend to work on payroll APIs.
Essentially, there are two types of data models that are most used in payroll APIs. One focuses on the employees and the other on the overall organization or company.
From an employee standpoint, any payroll API will need to have the following details:
The part of the world where the employee resides. You need to capture not only the present but also the permanent address of the employee.
Employee profile refers to a basic biography of the concerned person which includes their educational backgrounds, qualifications, experience, areas of expertise, etc. These will help you understand which pay scale they will fit into and define the compensation in a better way. It is equally important to get their personal details like date of birth, medical history, etc.
An employee ID will help you give a unique identifier to each employee and ensure all payments are made correctly. There might be instances where two or more employees share the same name or other details. An employee ID will help differentiate the two and process their payrolls correctly.
Information on dependents like elderly parents, spouses and children will help you get a better picture of the employee’s family. This is important from a social security and medicare perspective that is often extended to dependents of employees.
When it comes to company details, working with a payroll API, you need to have a fair understanding of the organizational structure. The idea is to understand the hierarchy within the organization, the different teams as well as to get manager details for each employee.
A simple use case includes reimbursements. Generally, reimbursements require an approval from the direct reporting manager. Having this information can make your payroll API work effectively.
Invariably, a payroll API can help you integrate different information related to an employee’s payroll and ensure a smooth payment process. However, it is interesting to note that many SaaS companies are now utilizing this payroll data collected from payroll APIs with HRIS integration to power their operations. Some of the top payroll API use cases include:
Often, information about payroll and income for individuals is siloed and insurance and lending companies have to navigate through dozens of documents to determine whether or not the individual is eligible for any kind of insurance or loans. Fortunately, with payroll APIs, this becomes easy by enabling several benefits.
Accounting and tax management companies have for long struggled with manual paperwork to file company taxes which comply with the national and regional norms. With payroll API, SaaS based accounting firms find it extremely easy to access all employee related tax information at one place. They can see the benefits offered to different employees, overall compensation, reimbursements and all other payroll related technicalities which were earlier siloed.
Armed with this data, courtesy payroll APIs, accounting firms find their work has been highly streamlined as they no longer have to manually document all information and then work to verify its accuracy and compliance.
There are several SaaS companies today that are helping businesses set up their benefits plans and services for high levels of employee satisfaction. These employee benefits companies can take help of data from payroll APIs to help businesses customize their benefits packages to best suit employee expectations and trends.
For instance, you might want to have different benefits for full-time versus contractual employees. With payroll API data, employee benefit companies can help businesses make financially prudent decisions for employee benefits.
The recent years have seen a rise in the adoption of performance management systems which can help businesses adopt practices for better employee performance. Armed with HRIS and payroll API data from different companies, these companies can identify motivators in payroll for better performance and even help identify rate of absenteeism and causes of poor performance.
Such SaaS based companies use payroll APIs to understand which pay scale employees take more time off, what their benefits look like and how this gap can be bridge to facilitate better performance. Invariably, here, payroll data can help streamline performance management from a benefits, incentives and compensation standpoint.As well as, it makes HRIS data makes it a one click process to gather all relevant employee information.
Consumer fintech companies, like those in direct deposit switching, are increasingly leveraging payroll APIs to facilitate their operations. Payroll API integrations allow consumers to directly route their deposits through their payroll with direct deposit switching. The account receiving the deposit is directly linked to the employee’s payroll account, making it easy for consumer fintech companies to increase their transactions, without manual intervention which increases friction and reduces overall value.
Finally, there are SaaS companies that deal with commercial insurance for companies for different purposes. Be it health or any other, payroll API data can help them get a realistic picture of the company’s people posture and their payroll information which can help these commercial insurance companies suggest the best plans for them as well as ensure that the employees are able to make the payments. They can achieve all of this without having to manually process data for all employees across the organization.
Research shows that the payroll market is poised to grow at a CAGR of 9.2% between 2022 and 2031, reaching $55.69 billion by 2031.
While the growth is promising, the payroll market is extremely fragmented. Undoubtedly, there are a few players like ADP RUN, Workday, etc. which have a significant market share. However, the top 10 players in the space constitute only about 55%-60% share, which clearly illustrates the presence of multiple other smaller companies. In fact, as you go down from the top 2-3 to the top 10, the market share for individual applications dwindles down to 1% each.
Here is a quick snapshot of the payroll market segmentation to help understand its fragmented nature and the need for a unified solution to make sense of payroll APIs.
Before moving on to how payroll fragmentation can be addressed with a unified solution, it is important to understand why this fragmentation exists. The top reasons include:
First, different businesses have different demographics and industries that they cater to. Irrespective of the features, each business is looking for a payroll solution that provides them with the best pricing based on their number of employees and employment terms. While some might have a large number of full time salaried employees, others might have a large number of contractual workers, while the third kind might have a balanced mix of both. These diverse demographic requirements have given birth to different payroll applications, fragmenting the market.
Next, it is important to understand that market conditions and employment terms are constantly in flux.
Therefore, as businesses need new and fresh approaches to deal with their payroll requirements, a consequent rise of fragmentation can be observed.
Finally, organizations are increasingly adopting white labeled or embedded payroll solutions which enable them to either brand the solutions with their name or embed the API into their existing product. This is enabling market players in other verticals to also enter the payroll market, which further adds to the fragmentation.
With so many payroll applications in the market for HRMS integration, it can be extremely daunting for businesses to make sense of all payroll related data. At the same time, it is difficult to manage data exchange between different payroll applications you might be using. Therefore, a unified payroll API can help make the process easy.
First, the data needs to be normalized. This means that your unified payroll API will normalize and funnel data from all payroll providers about each employee into a consistent, predictable and easy to understand data format or syntax, which can be used.
Second, a unified API will help you manage all employee payroll data in the form of unified logs with an API key to ensure that you can easily retrieve the data as and when needed.
Finally, a unified payroll API can help ensure that you are able to make sense of the payroll data and make informed decisions during financial planning and analysis on factors like pay equity, financial prudence, etc.
As a unified payroll API, Knit can help you easily get access to the following payroll data from different payroll applications that you might be using to facilitate seamless payment processing and payroll planning for the next financial year.
Seamlessly retrieve all employee data like first name, last name, unique ID, date of birth, work email, start date, termination data in case of former employees, marital data and employment type.
Hierarchical data for the employee, including information on the employee’s title and designation, department, manager details, subordinates or those who report to the employee, etc.
Details about the family members of the employees including children, spouse and parents. The information includes name, relation, date of birth and other specific data points which can be useful when you are negotiating insurance and other benefits with third party companies.
Information on where the employee currently resides, specific address as well as the permanent address for the employee.
All kinds of details about the compensation for the employee, including gross pay, net pay, benefits and other earnings like commissions, bonuses, employee contributions to benefits, employer contributions, taxes and other deductions, reimbursements, etc.
Overall, if you observe it is very clear that increasingly, the payroll market is becoming more and more fragmented. Invariably, it is becoming extremely difficult for businesses using multiple payroll applications to normalize all data to facilitate understanding and exchange. To make sense of payroll APIs, you need to first acquaint yourself with the key payroll concepts like pay period, payroll run, compensation, in-hand pay, gross pay, reimbursements, benefits and deductions, etc.
Once you understand these, you will agree that a payroll API can make the payment process seamless by helping in employee onboarding and payroll integration, management of reimbursements, administration of benefits and easy deductions, tax and net pay management, accounting and financial planning, among others.
Increasingly, data from payroll APIs is also enabling other SaaS companies to power their operations, especially in the finance and fintech space. If you look closely, lending, insurance, portfolio management, etc. have become very streamlined, automated with a reduced reliance on manual process. At the same time, HR management has also become simplified, especially across performance management. Payroll data can help performance management companies help businesses identify the right incentive structure to motivate high performance.
However, with increasing fragmentation, a unified payroll API can help businesses easily extract salary information, data on benefits and deductions and records about how and when the employees have been paid along with tax related information from a single source. Thus, if you are adopting payroll API, look out for data normalization and data management for maximum business effectiveness.
Are you in the market for Nango alternatives that can power your API integration solutions? In this article, we’ll explore five top platforms—Knit, Merge.dev, Apideck, Paragon, and Tray Embedded—and dive into their standout features, pros, and cons. Discover why Knit has become the go-to option for B2B SaaS integrations, helping companies simplify and secure their customer-facing data flows.
Nango is an open-source embedded integration platform that helps B2B SaaS companies quickly connect various applications via a single interface. Its streamlined setup and developer-friendly approach can accelerate time-to-market for customer-facing integrations. However, coverage is somewhat limited compared to broader unified API platforms—particularly those offering deeper category focus and event-driven architectures.
Nango also relies heavily on open source communities for adding new connectors which makes connector scaling less predictable fo complex or niche use cases.
Pros (Why Choose Nango):
Cons (Challenges & Limitations):
Now let’s look at a few Nango alternatives you can consider for scaling your B2B SaaS integrations, each with its own unique blend of coverage, security, and customization capabilities.
Overview
Knit is a unified API platform specifically tailored for B2B SaaS integrations. By consolidating multiple applications—ranging from CRM to HRIS, Recruitment, Communication, and Accounting—via a single API, Knit helps businesses reduce the complexity of API integration solutions while improving efficiency.
Key Features
Pros
Overview
Merge.dev delivers unified APIs for crucial categories like HR, payroll, accounting, CRM, and ticketing systems—making it a direct contender among top Nango alternatives.
Key Features
Pros
Cons
Overview
Apideck offers a suite of API integration solutions that give developers access to multiple services through a single integration layer. It’s well-suited for categories like HRIS and ATS.
Key Features
Pros
Cons
Overview
Paragon is an embedded integration platform geared toward building and managing customer-facing integrations for SaaS businesses. It stands out with its visual workflow builder, enabling lower-code solutions.
Key Features
Pros
Cons
Overview
Tray Embedded is another formidable competitor in the B2B SaaS integrations space. It leverages a visual workflow builder to enable embedded, native integrations that clients can use directly within their SaaS platforms.
Key Features
Pros
Cons
When searching for Nango alternatives that offer a streamlined, secure, and B2B SaaS-focused integration experience, Knit stands out. Its unified API approach and event-driven architecture protect end-user data while accelerating the development process. For businesses seeking API integration solutions that minimize complexity, boost security, and enhance scalability, Knit is a compelling choice.
Our detailed guides on the integrations space
1. Introduction: Why CRM API Integration Matters
Customer Relationship Management (CRM) platforms have evolved into the primary repository of customer data, tracking not only prospects and leads but also purchase histories, support tickets, marketing campaign engagement, and more. In an era when organizations rely on multiple tools—ranging from enterprise resource planning (ERP) systems to e-commerce solutions—the notion of a solitary, siloed CRM is increasingly impractical.
If you're just looking to quick start with a specific CRM APP integration, you can find APP specific guides and resources in our CRM API Guides Directory
CRM API integration answers the call for a more unified, real-time data exchange. By leveraging open (or proprietary) APIs, businesses can ensure consistent records across marketing campaigns, billing processes, customer support tickets, and beyond. For instance:
Whether you need a Customer Service CRM Integration, ERP CRM Integration, or you’re simply orchestrating a multi-app ecosystem, the idea remains the same: consistent, reliable data flow across all systems. This in-depth guide shows why CRM API integration is critical, how it works, and how you can tackle the common hurdles to excel in crm data integration.
2. Defining CRM API Integration
An API, or application programming interface, is essentially a set of rules and protocols allowing software applications to communicate. CRM API integration harnesses these endpoints to read, write, and update CRM records programmatically. It’s the backbone for syncing data with other business applications.
Key Features of CRM API Integration
In short, a well-structured crm integration strategy ensures that no matter which department or system touches customer data, changes feed back into a master record—your CRM.
3. Key Business Cases for CRM API Integration
A. Sales Automation
B. E-Commerce CRM Integration
C. ERP CRM Integration
D. Customer Service CRM Integration
E. Data Analytics & Reporting
F. Partner Portals and External Systems
4. Top Benefits of Connecting CRM Via APIs
1. Unified Data, Eliminated Silos
Gone are the days when a sales team’s pipeline existed in one system while marketing data or product usage metrics lived in another. CRM API integration merges them all, guaranteeing alignment across the organization.
2. Greater Efficiency and Automation
Manual data entry is not only tedious but prone to errors. An automated, API-based approach dramatically reduces time-consuming tasks and data discrepancies.
3. Enhanced Visibility for All Teams
When marketing can see new leads or conversions in real time, they adjust campaigns swiftly. When finance can see payment statuses in near-real-time, they can forecast revenue more accurately. Everyone reaps the advantages of crm integration.
4. Scalability and Flexibility
As your business evolves—expanding to new CRMs, or layering on new apps for marketing or customer support—unified crm api solutions or robust custom integrations can scale quickly, saving months of dev time.
5. Improved Customer Experience
Customers interacting with your brand expect you to “know who they are” no matter the touchpoint. With consolidated data, each department sees an updated, comprehensive profile. That leads to personalized interactions, timely support, and better overall satisfaction.
5. Core Data Concepts in CRM Integrations
Before diving into an integration project, you need a handle on how CRM data typically gets structured:
Contacts and Leads
Accounts or Organizations
Opportunities or Deals
Tasks, Activities, and Notes
Custom Fields and Objects
Pipeline Stages or Lifecycle Stages
Understanding how these objects fit together is fundamental to ensuring your crm api integration architecture doesn’t lose track of crucial relationships—like which contact belongs to which account or which deals are associated with a particular contact.
6. Approaches to CRM API Integration
When hooking up your CRM with other applications, you have multiple strategies:
1. Direct, Custom Integrations
If your company primarily uses a single CRM (like Salesforce) and just needs one or two integrations (e.g., with an ERP or marketing tool), a direct approach can be cost-effective.
2. Integration Platforms (iPaaS)
While iPaaS solutions can handle e-commerce crm integration, ERP CRM Integration, or other patterns, advanced custom logic or heavy data loads might still demand specialized dev work.
3. Unified CRM API Solutions
A unified crm api is often a game-changer for SaaS providers offering crm integration services to their users, significantly slashing dev overhead.
4. CRM Integration Services or Consultancies
When you need complicated logic (like an enterprise-level erp crm integration with specialized flows for ordering, shipping, or financial forecasting) or advanced custom objects, a specialized agency can accelerate time-to-value.
7. Challenges and Best Practices
Though CRM API integration is transformative, it comes with pitfalls.
Key Challenges
Best Practices for a Smooth CRM Integration
8. Implementation Steps: Getting Technical
For teams that prefer a direct or partially custom approach to crm api integration, here’s a rough, step-by-step guide.
Step 1: Requirements and Scope
Step 2: Auth and Credential Setup
Step 3: Data Modeling & Mapping
Step 4: Handle Rate Limits and Throttling
Step 5: Set Up Logging and Monitoring
Step 6: Testing and Validation
Step 7: Rollout and Post-Launch Maintenance
9. Trends & Future Outlook
CRM API integration is rapidly evolving alongside shifts in the broader SaaS ecosystem:
Overall, expect crm integration to keep playing a pivotal role as businesses expand to more specialized apps, push real-time personalization, and adopt AI-driven workflows.
10. FAQ on CRM API Integration
Q1: How do I choose between a direct integration, iPaaS, or a unified CRM API?
Q2: Are there specific limitations for hubspot api integration or pipedrive api integration?
Each CRM imposes unique daily/hourly call limits, plus different naming for objects or fields. HubSpot is known for structured docs but can have daily call limitations, while Pipedrive is quite developer-friendly but also enforces rate thresholds if you handle large data volumes.
Q3: What about security concerns for e-commerce crm integration?
When linking e-commerce with CRM, you often handle payment or user data. Encryption in transit (HTTPS) is mandatory, plus tokenized auth to limit exposure. If you store personal data, ensure compliance with GDPR, CCPA, or other relevant data protection laws.
Q4: Can I integrate multiple CRMs at once?
Yes, especially if you adopt either an iPaaS approach that supports multi-CRM connectors or a unified crm api solution. This is common for SaaS platforms whose customers each use a different CRM.
Q5: What if my CRM doesn’t offer a public API?
In rare cases, legacy or specialized CRMs might only provide CSV export or partial read APIs. You may need custom scripts for SFTP-based data transfers, or rely on partial manual updates. Alternatively, requesting partnership-level API access from the CRM vendor is another route, albeit time-consuming.
Q6: Is there a difference between “ERP CRM Integration” and “Customer Service CRM Integration”?
Yes. ERP CRM Integration typically focuses on bridging finance, inventory, or operational data with your CRM’s lead and deal records. Customer Service CRM Integration merges support or ticketing info with contact or account records, ensuring service teams have sales context and vice versa.
11. TL;DR
CRM API integration is the key to unifying customer records, streamlining processes, and enabling real-time data flow across your organization. Whether you’re linking a CRM like Salesforce, HubSpot, or Pipedrive to an ERP system (for financial operations) or using zendesk crm integrations for a better service desk, the right approach can transform how teams collaborate and how customers experience your brand.
No matter your use case—ERP CRM Integration, e-commerce crm integration, or a simple ticketing sync—investing in robust crm integration services or proven frameworks ensures you keep pace in a fast-evolving digital landscape. By building or adopting a strategic approach to crm api connectivity, you lay the groundwork for deeper customer insights, more efficient teams, and a future-proof data ecosystem
ATS integration is the process of connecting an Applicant Tracking System (ATS) with other applications—such as HRIS, payroll, onboarding, or assessment tools—so data flows seamlessly among them. These ATS API integrations automate tasks that otherwise require manual effort, including updating candidate statuses, transferring applicant details, and generating hiring reports.
If you're just looking to quick start with a specific ATS APP integration, you can find APP specific guides and resources in our ATS API Guides Directory
Today, ATS integrations are transforming recruitment by simplifying and automating workflows for both internal operations and customer-facing processes. Whether you’re building a software product that needs to integrate with your customers’ ATS platforms or simply improving your internal recruiting pipeline, understanding how ATS integrations work is crucial to delivering a better hiring experience.
Hiring the right talent is fundamental to building a high-performing organization. However, recruitment is complex and involves multiple touchpoints—from sourcing and screening to final offer acceptance. By leveraging ATS integration, organizations can:
Fun Fact: According to reports, 78% of recruiters who use an ATS report improved efficiency in the hiring process.
To develop or leverage ATS integrations effectively, you need to understand key Applicant Tracking System data models and concepts. Many ATS providers maintain similar objects, though exact naming can vary:
As a unified API for ATS integration, Knit uses consolidated concepts for ATS data. Examples include:
These standardized data models ensure consistent data flow across different ATS platforms, reducing the complexities of varied naming conventions or schemas.
By automatically updating candidate information across portals, you can expedite how quickly candidates move to the next stage. Ultimately, ATS integration leads to fewer delays, faster time-to-hire, and a lower risk of losing top talent to slow processes.
Learn more: Automate Recruitment Workflows with ATS API
Connecting an ATS to onboarding platforms (e.g., e-signature or document-verification apps) speeds up the process of getting new hires set up. Automated provisioning tasks—like granting software access or licenses—ensure that employees are productive from Day One.
Manual data entry is prone to mistakes—like a single-digit error in a salary offer that can cost both time and goodwill. ATS integrations largely eliminate these errors by automating data transfers, ensuring accuracy and minimizing disruptions to the hiring lifecycle.
Comprehensive, up-to-date recruiting data is essential for tracking trends like time-to-hire, cost-per-hire, and candidate conversion rates. By syncing ATS data with other HR and analytics platforms in real time, organizations gain clearer insights into workforce needs.
Automations free recruiters to focus on strategic tasks like engaging top talent, while candidates receive faster responses and smoother interactions. Overall, ATS integration raises satisfaction for every stakeholder in the hiring pipeline.
Below are some everyday ways organizations and software platforms rely on ATS integrations to streamline hiring:
Applicant Tracking Systems vary in depth and breadth. Some are designed for enterprises, while others cater to smaller businesses. Here are a few categories commonly integrated via APIs:
Below are some common nuances and quirks of some popular ATS APIs
When deciding which ATS APIs to integrate, consider:
While integrating with an ATS can deliver enormous benefits, it’s not always straightforward:
By incorporating these best practices, you’ll set a solid foundation for smooth ATS integration:
Learn More: Whitepaper: The Unified API Approach to Building Product Integrations
┌────────────────────┐ ┌────────────────────┐
│ Recruiting SaaS │ │ ATS Platform │
│ - Candidate Mgmt │ │ - Job Listings │
│ - UI for Jobs │ │ - Application Data │
└────────┬───────────┘ └─────────┬──────────┘
│ 1. Fetch Jobs/Sync Apps │
│ 2. Display Jobs in UI │
▼ 3. Push Candidate Data │
┌─────────────────────┐ ┌─────────────────────┐
│ Integration Layer │ ----->│ ATS API (OAuth/Auth)│
│ (Unified API / Knit)│ └─────────────────────┘
└─────────────────────┘
Knit is a unified ATS API platform that allows you to connect with multiple ATS tools through a single API. Rather than managing individual authentication, communication protocols, and data transformations for each ATS, Knit centralizes all these complexities.
Learn more: Getting started with Knit
Building ATS integrations in-house (direct connectors) requires deep domain expertise, ongoing maintenance, and repeated data normalization. Here’s a quick overview of when to choose each path:
Security is paramount when handling sensitive candidate data. Mistakes can lead to data breaches, compliance issues, and reputational harm.
Knit’s Approach to Data Security
Q1. How do I know which ATS platforms to integrate first?
Start by surveying your customer base or evaluating internal usage patterns. Integrate the ATS solutions most common among your users.
Q2. Is in-house development ever better than using a unified API?
If you only need a single ATS and have a highly specialized use case, in-house could work. But for multiple connectors, a unified API is usually faster and cheaper.
Q3. Can I customize data fields that aren’t covered by the common data model?
Yes. Unified APIs (including Knit) often offer pass-through or custom field support to accommodate non-standard data requirements.
Q4. Does ATS integration require specialized developers?
While knowledge of REST/SOAP/GraphQL helps, a unified API can abstract much of that complexity, making it easier for generalist developers to implement.
Q5. What about ongoing maintenance once integrations are live?
Plan for version changes, rate-limit updates, and new data objects. A robust unified API provider handles much of this behind the scenes.
ATS integration is at the core of modern recruiting. By connecting your ATS to the right tools—HRIS, onboarding, background checks—you can reduce hiring time, eliminate data errors, and create a streamlined experience for everyone involved. While building multiple in-house connectors is an option, using a unified API like Knit offers an accelerated route to connecting with major ATS platforms, saving you development time and costs.
In today's AI-driven world, AI agents have become transformative tools, capable of executing tasks with unparalleled speed, precision, and adaptability. From automating mundane processes to providing hyper-personalized customer experiences, these agents are reshaping the way businesses function and how users engage with technology. However, their true potential lies beyond standalone functionalities—they thrive when integrated seamlessly with diverse systems, data sources, and applications.
This integration is not merely about connectivity; it’s about enabling AI agents to access, process, and act on real-time information across complex environments. Whether pulling data from enterprise CRMs, analyzing unstructured documents, or triggering workflows in third-party platforms, integration equips AI agents to become more context-aware, action-oriented, and capable of delivering measurable value.
This article explores how seamless integrations unlock the full potential of AI agents, the best practices to ensure success, and the challenges that organizations must overcome to achieve seamless and impactful integration.
The rise of Artificial Intelligence (AI) agents marks a transformative shift in how we interact with technology. AI agents are intelligent software entities capable of performing tasks autonomously, mimicking human behavior, and adapting to new scenarios without explicit human intervention. From chatbots resolving customer queries to sophisticated virtual assistants managing complex workflows, these agents are becoming integral across industries.
This rise of use of AI agents has been attributed to factors like:
AI agents are more than just software programs; they are intelligent systems capable of executing tasks autonomously by mimicking human-like reasoning, learning, and adaptability. Their functionality is built on two foundational pillars:
For optimal performance, AI agents require deep contextual understanding. This extends beyond familiarity with a product or service to include insights into customer pain points, historical interactions, and updates in knowledge. However, to equip AI agents with this contextual knowledge, it is important to provide them access to a centralized knowledge base or data lake, often scattered across multiple systems, applications, and formats. This ensures they are working with the most relevant and up-to-date information. Furthermore, they need access to all new information, such as product updates, evolving customer requirements, or changes in business processes, ensuring that their outputs remain relevant and accurate.
For instance, an AI agent assisting a sales team must have access to CRM data, historical conversations, pricing details, and product catalogs to provide actionable insights during a customer interaction.
AI agents’ value lies not only in their ability to comprehend but also to act. For instance, AI agents can perform activities such as updating CRM records after a sales call, generating invoices, or creating tasks in project management tools based on user input or triggers. Similarly, AI agents can initiate complex workflows, such as escalating support tickets, scheduling appointments, or launching marketing campaigns. However, this requires seamless connectivity across different applications to facilitate action.
For example, an AI agent managing customer support could resolve queries by pulling answers from a knowledge base and, if necessary, escalating unresolved issues to a human representative with full context.
The capabilities of AI agents are undeniably remarkable. However, their true potential can only be realized when they seamlessly access contextual knowledge and take informed actions across a wide array of applications. This is where integrations play a pivotal role, serving as the key to bridging gaps and unlocking the full power of AI agents.
The effectiveness of an AI agent is directly tied to its ability to access and utilize data stored across diverse platforms. This is where integrations shine, acting as conduits that connect the AI agent to the wealth of information scattered across different systems. These data sources fall into several broad categories, each contributing uniquely to the agent's capabilities:
Platforms like databases, Customer Relationship Management (CRM) systems (e.g., Salesforce, HubSpot), and Enterprise Resource Planning (ERP) tools house structured data—clean, organized, and easily queryable. For example, CRM integrations allow AI agents to retrieve customer contact details, sales pipelines, and interaction histories, which they can use to personalize customer interactions or automate follow-ups.
The majority of organizational knowledge exists in unstructured formats, such as PDFs, Word documents, emails, and collaborative platforms like Notion or Confluence. Cloud storage systems like Google Drive and Dropbox add another layer of complexity, storing files without predefined schemas. Integrating with these systems allows AI agents to extract key insights from meeting notes, onboarding manuals, or research reports. For instance, an AI assistant integrated with Google Drive could retrieve and summarize a company’s annual performance review stored in a PDF document.
Real-time data streams from IoT devices, analytics tools, or social media platforms offer actionable insights that are constantly updated. AI agents integrated with streaming data sources can monitor metrics, such as energy usage from IoT sensors or engagement rates from Twitter analytics, and make recommendations or trigger actions based on live updates.
APIs from third-party services like payment gateways (Stripe, PayPal), logistics platforms (DHL, FedEx), and HR systems (BambooHR, Workday) expand the agent's ability to act across verticals. For example, an AI agent integrated with a payment gateway could automatically reconcile invoices, track payments, and even issue alerts for overdue accounts.
To process this vast array of data, AI agents rely on data ingestion—the process of collecting, aggregating, and transforming raw data into a usable format. Data ingestion pipelines ensure that the agent has access to a broad and rich understanding of the information landscape, enhancing its ability to make accurate decisions.
However, this capability requires robust integrations with a wide variety of third-party applications. Whether it's CRM systems, analytics tools, or knowledge repositories, each integration provides an additional layer of context that the agent can leverage.
Without these integrations, AI agents would be confined to static or siloed information, limiting their ability to adapt to dynamic environments. For example, an AI-powered customer service bot lacking integration with an order management system might struggle to provide real-time updates on a customer’s order status, resulting in a frustrating user experience.
In many applications, the true value of AI agents lies in their ability to respond with real-time or near-real-time accuracy. Integrations with webhooks and streaming APIs enable the agent to access live data updates, ensuring that its responses remain relevant and timely.
Consider a scenario where an AI-powered invoicing assistant is tasked with generating invoices based on software usage. If the agent relies on a delayed data sync, it might fail to account for a client’s excess usage in the final moments before the invoice is generated. This oversight could result in inaccurate billing, financial discrepancies, and strained customer relationships.
Integrations are not merely a way to access data for AI agents; they are critical to enabling these agents to take meaningful actions on behalf of other applications. This capability is what transforms AI agents from passive data collectors into active participants in business processes.
Integrations play a crucial role in this process by connecting AI agents with different applications, enabling them to interact seamlessly and perform tasks on behalf of the user to trigger responses, updates, or actions in real time.
For instance, A customer service AI agent integrated with CRM platforms can automatically update customer records, initiate follow-up emails, and even generate reports based on the latest customer interactions. SImilarly, if a popular product is running low, the AI agent for e-commerce platform can automatically reorder from the supplier, update the website’s product page with new availability dates, and notify customers about upcoming restocks. Furthermore, A marketing AI agent integrated with CRM and marketing automation platforms (e.g., Mailchimp, ActiveCampaign) can automate email campaigns based on customer behaviors—such as opening specific emails, clicking on links, or making purchases.
Integrations allow AI agents to automate processes that span across different systems. For example, an AI agent integrated with a project management tool and a communication platform can automate task assignments based on project milestones, notify team members of updates, and adjust timelines based on real-time data from work management systems.
For developers driving these integrations, it’s essential to build robust APIs and use standardized protocols like OAuth for secure data access across each of the applications in use. They should also focus on real-time synchronization to ensure the AI agent acts on the most current data available. Proper error handling, logging, and monitoring mechanisms are critical to maintaining reliability and performance across integrations. Furthermore, as AI agents often interact with multiple platforms, developers should design integration solutions that can scale. This involves using scalable data storage solutions, optimizing data flow, and regularly testing integration performance under load.
Retrieval-Augmented Generation (RAG) is a transformative approach that enhances the capabilities of AI agents by addressing a fundamental limitation of generative AI models: reliance on static, pre-trained knowledge. RAG fills this gap by providing a way for AI agents to efficiently access, interpret, and utilize information from a variety of data sources. Here’s how iintegrations help in building RAG pipelines for AI agents:
Traditional APIs are optimized for structured data (like databases, CRMs, and spreadsheets). However, many of the most valuable insights for AI agents come from unstructured data—documents (PDFs), emails, chats, meeting notes, Notion, and more. Unstructured data often contains detailed, nuanced information that is not easily captured in structured formats.
RAG enables AI agents to access and leverage this wealth of unstructured data by integrating it into their decision-making processes. By integrating with these unstructured data sources, AI agents:
RAG involves not only the retrieval of relevant data from these sources but also the generation of responses based on this data. It allows AI agents to pull in information from different platforms, consolidate it, and generate responses that are contextually relevant.
For instance, an HR AI agent might need to pull data from employee records, performance reviews, and onboarding documents to answer a question about benefits. RAG enables this agent to access the necessary context and background information from multiple sources, ensuring the response is accurate and comprehensive through a single retrieval mechanism.
RAG empowers AI agents by providing real-time access to updated information from across various platforms with the help of Webhooks. This is critical for applications like customer service, where responses must be based on the latest data.
For example, if a customer asks about their recent order status, the AI agent can access real-time shipping data from a logistics platform, order history from an e-commerce system, and promotional notes from a marketing database—enabling it to provide a response with the latest information. Without RAG, the agent might only be able to provide a generic answer based on static data, leading to inaccuracies and customer frustration.
While RAG presents immense opportunities to enhance AI capabilities, its implementation comes with a set of challenges. Addressing these challenges is crucial to building efficient, scalable, and reliable AI systems.
Integration of an AI-powered customer service agent with CRM systems, ticketing platforms, and other tools can help enhance contextual knowledge and take proactive actions, delivering a superior customer experience.
For instance, when a customer reaches out with a query—such as a delayed order—the AI agent retrieves their profile from the CRM, including past interactions, order history, and loyalty status, to gain a comprehensive understanding of their background. Simultaneously, it queries the ticketing system to identify any related past or ongoing issues and checks the order management system for real-time updates on the order status. Combining this data, the AI develops a holistic view of the situation and crafts a personalized response. It may empathize with the customer’s frustration, offer an estimated delivery timeline, provide goodwill gestures like loyalty points or discounts, and prioritize the order for expedited delivery.
The AI agent also performs critical backend tasks to maintain consistency across systems. It logs the interaction details in the CRM, updating the customer’s profile with notes on the resolution and any loyalty rewards granted. The ticketing system is updated with a resolution summary, relevant tags, and any necessary escalation details. Simultaneously, the order management system reflects the updated delivery status, and insights from the resolution are fed into the knowledge base to improve responses to similar queries in the future. Furthermore, the AI captures performance metrics, such as resolution times and sentiment analysis, which are pushed into analytics tools for tracking and reporting.
In retail, AI agents can integrate with inventory management systems, customer loyalty platforms, and marketing automation tools for enhancing customer experience and operational efficiency. For instance, when a customer purchases a product online, the AI agent quickly retrieves data from the inventory management system to check stock levels. It can then update the order status in real time, ensuring that the customer is informed about the availability and expected delivery date of the product. If the product is out of stock, the AI agent can suggest alternatives that are similar in features, quality, or price, or provide an estimated restocking date to prevent customer frustration and offer a solution that meets their needs.
Similarly, if a customer frequently purchases similar items, the AI might note this and suggest additional products or promotions related to these interests in future communications. By integrating with marketing automation tools, the AI agent can personalize marketing campaigns, sending targeted emails, SMS messages, or notifications with relevant offers, discounts, or recommendations based on the customer’s previous interactions and buying behaviors. The AI agent also writes back data to customer profiles within the CRM system. It logs details such as purchase history, preferences, and behavioral insights, allowing retailers to gain a deeper understanding of their customers’ shopping patterns and preferences.
Integrating AI (Artificial Intelligence) and RAG (Recommendations, Actions, and Goals) frameworks into existing systems is crucial for leveraging their full potential, but it introduces significant technical challenges that organizations must navigate. These challenges span across data ingestion, system compatibility, and scalability, often requiring specialized technical solutions and ongoing management to ensure successful implementation.
Adding integrations to AI agents involves providing these agents with the ability to seamlessly connect with external systems, APIs, or services, allowing them to access, exchange, and act on data. Here are the top ways to achieve the same:
Custom development involves creating tailored integrations from scratch to connect the AI agent with various external systems. This method requires in-depth knowledge of APIs, data models, and custom logic. The process involves developing specific integrations to meet unique business requirements, ensuring complete control over data flows, transformations, and error handling. This approach is suitable for complex use cases where pre-built solutions may not suffice.
Embedded iPaaS (Integration Platform as a Service) solutions offer pre-built integration platforms that include no-code or low-code tools. These platforms allow organizations to quickly and easily set up integrations between the AI agent and various external systems without needing deep technical expertise. The integration process is simplified by using a graphical interface to configure workflows and data mappings, reducing development time and resource requirements.
Unified API solutions provide a single API endpoint that connects to multiple SaaS products and external systems, simplifying the integration process. This method abstracts the complexity of dealing with multiple APIs by consolidating them into a unified interface. It allows the AI agent to access a wide range of services, such as CRM systems, marketing platforms, and data analytics tools, through a seamless and standardized integration process.
Knit offers a game-changing solution for organizations looking to integrate their AI agents with a wide variety of SaaS applications quickly and efficiently. By providing a seamless, AI-driven integration process, Knit empowers businesses to unlock the full potential of their AI agents by connecting them with the necessary tools and data sources.
By integrating with Knit, organizations can power their AI agents to interact seamlessly with a wide array of applications. This capability not only enhances productivity and operational efficiency but also allows for the creation of innovative use cases that would be difficult to achieve with manual integration processes. Knit thus transforms how businesses utilize AI agents, making it easier to harness the full power of their data across multiple platforms.
Ready to see how Knit can transform your AI agents? Contact us today for a personalized demo!
Curated API guides and documentations for all the popular tools
This guide is part of our growing collection on CRM integrations. We’re continuously exploring new apps and updating our CRM Guides Directory with fresh insights.
Salesforce is a leading cloud-based platform that revolutionizes how businesses manage relationships with their customers. It offers a suite of tools for customer relationship management (CRM), enabling companies to streamline sales, marketing, customer service, and analytics.
With its robust scalability and customizable solutions, Salesforce empowers organizations of all sizes to enhance customer interactions, improve productivity, and drive growth.
Salesforce also provides APIs to enable seamless integration with its platform, allowing developers to access and manage data, automate processes, and extend functionality. These APIs, including REST, SOAP, Bulk, and Streaming APIs, support various use cases such as data synchronization, real-time updates, and custom application development, making Salesforce highly adaptable to diverse business needs.
For an in-depth guide on Salesforce Integration, visit our Salesforce API Integration Guide for developers
Key highlights of Salesforce APIs are as follows:
This article will provide an overview of the SalesForce API endpoints. These endpoints enable businesses to build custom solutions, automate workflows, and streamline customer operations. For an in-depth guide on building Salesforce API integrations, visit our Salesforce Integration Guide (In-Depth)
Here are the most commonly used API endpoints in the latest REST API version (Version 62.0) -
Here’s a detailed reference to all the SalesForce API Endpoints.
Here are the frequently asked questions about SalesForce APIs to help you get started:
Find more FAQs here.
To access Salesforce APIs, you need to create a Salesforce Developer account, generate an OAuth token, and obtain the necessary API credentials (Client ID and Client Secret) via the Salesforce Developer Console. However, if you want to integrate with multiple CRM APIs quickly, you can get started with Knit, one API for all top HR integrations.
To sign up for free, click here. To check the pricing, see our pricing page.
At Knit, we regularly publish guides and tutorials to make it easier for developers to build their API integrations. However, we realize finding the information spread across our growing resource section can be a challenge.
To make it simpler, we collect and organise all the guides in lists specific to a particular category. This list is about all the HRIS API guides we have published so far to make HRIS Integration simpler for developers.
It is divided into two sections - In-depth integration guides for various HRIS platforms and API directories. While in-depth guides cover the more complex APPs in detail, including authentication, use cases, and more, the API directories give you a quick overview of the common API end points for each APP, which you can use as a reference to build your integrations.
We hope the developer community will find these resources useful in building out API integrations. If you think that we should add some more guides or you think some information is missing/ outdated, please let us know by dropping a line to hello@getknit.dev. We’ll be quick to update it - for the benefit of the community!
Knit is a Unified API platform that helps SaaS companies and AI agents offer out-of-the-box integrations to their customers. Instead of building and maintaining dozens of one-off integrations, developers integrate once with Knit’s Unified API and instantly unlock connectivity with 100+ tools across categories like CRM, HRIS, ATS, Accounting, E-Sign, and more.
Whether you’re building a SaaS product or powering actions through an AI agent, Knit handles the complexity of third-party APIs—authentication, data normalization, rate limits, and schema differences—so you can focus on delivering a seamless experience to your users.
Build once. Integrate everywhere.
HRIS Integration is just one category we cover. Here's our full list of our directories across different APP categories:
This guide is part of our growing collection on HRIS integrations. We’re continuously exploring new apps and updating our HRIS Guides Directory with fresh insights.
BambooHR is a leading cloud-based human resources software platform tailored for small to medium-sized businesses. It streamlines HR functions by offering a comprehensive suite of features such as employee data management, an applicant tracking system, onboarding tools, time-off management, performance management, and robust reporting and analytics. By centralizing these HR processes, BambooHR significantly reduces the administrative burden on HR teams, thereby enhancing overall productivity and efficiency.
Looking to dive deep into how BambooHR API works? Check our detailed BambooHR API Guide to learn more on BambooHR authentication, best practices and more.
One of the standout features of BambooHR is its employee self-service portal, which empowers employees to manage their own information, request time off, and access important documents, thereby fostering a more engaged and autonomous workforce. Additionally, the BambooHR API plays a crucial role in integrating this platform with other business systems, ensuring seamless data flow and enhancing the functionality of existing HR processes. In the following sections, we will delve deeper into the BambooHR API integration process and explore how it can be leveraged to optimize HR operations.
Looking for an example on how to use the above APIs to build a BambooHR integration? Check our guide to get employee dependent data from BambooHR
/v1/employees/{id}/
, where {id}
is the employee's ID. You can specify which fields to retrieve by including a comma-separated list of field names in the fields
query parameter.For quick and seamless integration with BambooHR API, Knit API offers a convenient solution. It’s AI powered integration platform allows you to build any BambooHR API Integration use case. By integrating with Knit just once, you can integrate with multiple other ATS, HRIS, Payroll and other systems in one go with a unified approach. Knit takes care of all the authentication, authorization, and ongoing integration maintenance. This approach not only saves time but also ensures a smooth and reliable connection to BambooHR API.
To sign up for free, click here. To check the pricing, see our pricing page.